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1 Scienti�c Method

All this is controversial, and opinions vary. It is useful to be aware of the
various views anyway, maybe where your journal reviewer or editor is coming
from. See the �rst part of the notes, Statistics: Introduction and overview,
for a similar although slightly di�erent account.

2 Testing Statistical Hypothesis

See Section 5 in Statistics: Introduction and overview for a short description.
More detail follows.

1



2.1 Formulation

Let's use the previous example of the dispersion of seedlings in a �eld. A
simple model is the Poisson point process, where seedlings are located �at
random�, independently and homogeneously (constant rate λ). We might
suspect that this is not realistic, that in fact the locations tend to be clumped
in some way. We count seedlings in a number of quadrats, and calculate
the coe�cient of dispersion s2/Y (Chapter 3 notes, section 4.5). In the
Poisson model both the population variance and the mean are λ, so that
the coe�cient should be around 1. A value greater than 1 would indicate
clumping. But we could also obtain such a value by pure chance even if
there is no clumping. One can �nd a threshold or critical value such that the
probability of �nding a coe�cient larger than that is small, say less than 5%.
If the observed coe�cient is larger than that, we may take it as evidence of
clumping. In other words, we reject the hypothesis of a Poisson process as
unlikely.

That is basically it. All (classical) hypothesis testing follows this reasoning.
The steps are:

1. Dream-up a simple model, the null hypothesis H0, usually what we
would like to prove wrong1. Null: �nothing interesting�. In this case
a �random� or Poisson dispersion. It is the opposite of the alternative

hypothesis, what we might suspect to be the truth (clumping, �some-
thing going on�). We cannot actually prove that H0 is wrong, but if
we are lucky we might be able to show that it is �highly unlikely�.

2. Choose a test statistic, a statistic (function of the sample) that can dis-
criminate between H0 and the alternative. The coe�cient of dispersion
in the example2.

3. Find the distribution of the test statistic, based on H0 (the sampling

distribution, remember?).

4. Choose a suitably small signi�cance level3 α. For instance, α = 0.05.
Partition the possible values of the test statistic into a rejection region

or critical region for which the probability (assuming H0) is α, and an
acceptance region having probability 1− α. In the example there is a

1 Not allways. E.g., one might test for normality before further analysis that depends

on that assumption.
2This is a hypothetical example, other test statistics might be better.
3 Also called a p-value, although see Section 2.2 for a possible distinction.
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critical value c such that P{s2/Y > c} = 0.05, and P{s2/Y ≤ c} =
0.95.

5. If the observed test statistic lies in the rejection region, then �reject
H0�, otherwise �accept H0�. �There must be something� vs. �maybe
not�.

Observations:

• This roundabout approach has a big advantage: only a simple hypo-
thetical model for H0 is needed, a complicated model for a realistic
alternative is not required. In the example, the Poisson process model
is relatively simple, a model describing clumping would be much more
complicated. In fact, we do not even need to be very explicit about
the alternative, exactly what kind of clumping are we talking about.
The alternative can be just �not H0�.

• Most of the time the acceptance region is a simple interval, and the
rejection region consists of either one or two intervals. With the alter-
native of clumping, each region is a simple interval, we are ignoring the
possibility of the seedlings having a spatial pattern more regular than
random. It is a one-sided or one-tailed test. If the alternative were
�either clumping or uniformity�, we would need two critical values, and
H0 would be rejected if the coe�cient of dispersion is either too large
or too small: a two-sided or two tails test.

• This is essentially the same as a con�dence interval for the test statistic.
Most of what was said before about those, and the lab practice, apply
to hypothesis testing too.

• Most likely, you will always be using standard tests, previously devel-
oped for certain typical situations. The test statistic is given, and the
distributions are already worked out (t-, χ2, or F distributions). All
you need to do is to calculate or look-up critical values or p-values4.

• The probability of acceptance/rejection depends on sample size, be-
sides population variability and other things. Larger samples may suc-
ceed in rejecting H0, where a smaller sample failed. Note however that
the signi�cance level for a sequence of tests is not the same anymore.
On average, one in twenty studies will reject a true H0 at the 0.05 level.
Often the one that gets published!

4 Watch out for some terminology mix-up in the textbook: critical value is used for

critical or signi�cance levels, aka p-values, e.g., on page 97.
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2.2 P-values, reporting

For better or for worse, most scienti�c reporting has standardized on signi�-
cance levels (p-values) of 0.05 (1-in-20, �statistically signi�cant�, one *), and
0.01 (�very� or �highly� signi�cant, two **). This is the same for hypothesis
testing and for con�dence intervals.

These particular levels are partly a carry-over from the time of statistical
tables (not so long ago). Critical values could only be practically tabulated
for a few signi�cance levels, and those two were standard. The way that
works is to compare the observed test statistic to the tabulated critical value
for the given level. It gets a bit messier with double-sided tests, more on
that later.

More recently, it has become accepted/fashionable in some journals to report
instead the p-value calculated for the observed test statistic. This can then
be compared to 0.05, 0.01, or any other level. The practice is made feasible
by suitable statistical software. In this case we might consider p-value not
to be synonimous with signi�cance level.

2.3 Type I and type II errors

It is conventional to de�ne two possible types of error in hypothesis test-
ing:

Type I: Reject H0 when H0 is true. This is what we have mainly been
discussing. The probability of committing this error is the signi�cance
level α. It is like convicting the innocent.

Type II: Accept H0 when H0 is false. The guilty escapes conviction. I
mentioned that this can happen if the sample is not large enough.
The probability of this not happening is called the power of the test,
denoted by β. In most cases it is di�cult to calculate. Statisticians try
to devise tests that are powerful. Simple users cannot do much about
it, apart from gathering more measurements. Good to be aware of
these errors, but power calculations may not be of much use to them,
except perhaps when planning certain kinds of experiments.
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3 Hypothesis testing, estimation, prediction

Very frequently, testing hypothesis produces the right answer to the wrong
question. One may not be interested in showing that there is some e�ect,
but rather in assessing how large that e�ect might be. In publications it
is common to see an analysis of variance, for instance, where the relevant
question is one of estimation. Still, a hypothesis test might be a reasonable
�rst step, no point in estimating a more complex model if a simple one will
do.

In some situations the parameters of a model may have an intrinsic interest,
they may have an important interpretation. More commonly, parameter
estimation is an intermediate step to prediction, using the model to estimate
the values of future observations.

http://xkcd.com/892/
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