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1 Samples and statistics

A population, or population model, is a probability distributions. It usually
involves one or more unknown parameters.

Given a population with random variable Y , a (simple) random sample is a
list or vector of n RVs (observations)

(Y1, Y2, . . . , Yn) ,

where the Yi are independent, and Yi has the same distribution as Y 1.

A statistic is any function of the sample that does not depend on the pa-
rameters. It follows that a statistic is an RV, and its distribution can be
derived from the distribution of the population. As is customary in math,
sometimes the same word is used both for the function and for the func-
tion values (numbers). Which is which should (hopefully) be clear from
context.

Statistics can be used for purely descriptive purposes, as data summaries,
and/or for statistical inference. An estimator is a statistic used to compute
parameter estimates.

The standard deviation of an estimator is called its standard error.

2 The empirical distribution

A trick that is sometimes useful is to de�ne the empirical distribution for a
sample. It is simply a discrete distribution that gives equal probabilities to
the observed Yi's. That is,

fe(y) =
1

n
for y = Y1, Y2, . . . , Yn .

Of course, this PDF looks nothing like the PDF of Y , at least not if Y is
continuous. But the CDF Fe(y), a step function that jumps by 1/n at each
of the observations, approximates the CDF of Y as n increases (Figure 1 2).

1 For some reason Y is used instead of X in this Chapter.
2 Actually, this shows a particularly good looking sample, most samples of 20 look

much worse (try it!). More on this later.
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Figure 1: Empirical PDF and CDF for a random sample of n = 20 values
from a normal distribution, plotted together with the normal CDF.
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It should be clear that F (y) is the proportion of observations in the sample
that are less than or equal to y.

It may be convenient to consider the observations as sorted in ascending order
of size. This empirical CDF, or empirical distribution function (EDF), has
a number of uses, among other dealing with medians and sample quantiles
later in this chapter. It can be calculated in R with the function ecdf.

3 Location

3.1 Arithmetic mean

Consider a (simple random) sample of n independent observations Yi from
a population with mean E[Y ] = µ and variance V [Y ] = σ. The sample
arithmetic mean, or simply mean, is

Y =
1

n

n∑
i=1

Yi .

From the linearity of the expectation,

E[Y ] =
1

n

n∑
i=1

E[Yi] =
1

n

n∑
i=1

µ = µ .

Y is an unbiased estimator of µ.

From the properties of the variance (and the independence of the Yi),

V [Y ] =

(
1

n

)2 n∑
i=1

V [Yi] =
1

n2

n∑
i=1

σ2 =
σ2

n
.

It is seen that as n increases, the sample variance decreases. The sample
mean tends to the population mean µ. This is a form of the Law of Large

Numbers 3.

From the previous equation, the standard error of the mean, that is, its
standard deviation, is

sY =

√
V [Y ] =

σ√
n
.

3 We have not used the assumption of normality from the textbook. It is only necessary
that µ and σ2 are �nite. This is usually the case, except in pathological examples such as
the Cauchy distribution.
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From the Central Limit Theorem, we also know that the distribution of Y
tends to a normal N(µ, σ/

√
n) as n becomes large.

Note that the sample mean is the expected value of the empirical distribu-
tion: ∑

Yife(Yi) =
∑

Yi
1

n
= Y .

3.2 Geometric mean

It could be argued that if an animal population grows one year at 10%, and
the next year at 20%, the �proper� two-year average growth should not be
the arithmetic mean 15%. Why? If the initial population size4 is N , after the
�rst year it is k1N , where the growth factor is k1 = 1+ 10/100 = 1.1. After
the second year the population size is k2k1N , with k2 = 1 + 20/100 = 1.2.
A more �meaningful� summary for the growth over the two years might be
a growth factor k̂ such that k2k1N = k̂k̂N , that is, k̂ =

√
k1k2.

As the example suggests, in some situations, typically involving multiplica-
tive processes, a location statistic using multiplication instead of addition
may be more useful, the geometric mean

GM = n

√√√√ n∏
i=1

Yi =

(
n∏

i=1

Yi

) 1
n

.

Note that, taking logarithms,

logGM =
1

n

n∑
i=1

log Yi = log Yi ,

so that
GM = exp(log Y ) .

3.3 Harmonic mean

Sometimes the harmonic mean can be useful:

H =
1

1/Y
.

4Do not confuse with the statistical population!
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It can be shown that always

H ≤ GM ≤ Y .

3.4 Transformations

The arithmetic mean tends to work well when the distribution is close to
symmetric. It may be possible to transform the original variables through
some function g, so that g(Yi) is more symmetric than Yi. One can then use
the mean of the transformed variables to obtained a transformed mean, say
M, such that

g(M) = g(Y )

M = g−1[g(Y )]

The geometric and harmonic means are special cases of this, with g(Y ) =
log(Y ) and g(Y ) = 1/Y , respectively. Presumably they would work well
when those transformations help to make the distribution more symmet-
ric.

3.5 Median, mode

The sample median is the mid-point of the data, a value that has an equal
number of observations below and above it. It corresponds to the point in
the middle if n is odd. If n is even, it can be said that any value between
the two central points is a median, or more often, it is de�ned somewhat
arbitrarily as the mean of those two points

More generally, the median of any RV, discrete or continuous, is the value
that divides the probability in half. In other words, the value ym for which
the CDF F (ym) = 0.5. Or ym = F−1(0.5). The sample median is the median
of the empirical distribution (see Figure 1).

The median may be more meaningful than the mean in describing the loca-
tion of the �centre� of a skewed distribution. For this reason it is often used
in o�cial statistics for things like median income, or median house prices.
Note that it is invariant under transformations, that is, the median of g(Y )
is the g of the median of Y . Except for a small di�erence with even n, due
to the averaging of the 2 central values.
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Another advantage is the resistance to outliers and observation errors. A
gross error in one observation either does not change the median, or it
changes it only slightly if the correct value was on the opposite side.

A disadvantage compared to the mean is that the mean is much more conve-
nient mathematically. Derived distributions are simpler for the mean than
for the median. In addition, the median is usually more variable; for the
normal distribution the standard deviation of the sample median is about
25% larger than that of the mean.

For RVs, the mode is the value for which the PDF has a maximum. In the
same way, for discrete populations the sample mode is the most frequent
value in the sample. In principle, samples from a continuous population do
not have a mode, since values do not repeat (note also that the empirical
PDF is �at). Sometimes a mode is given based on rounding, or on binning
in a histogram.

4 Spread, variability

4.1 Variance, standard deviation

The sample variance is variously de�ned as the sum of the squared deviations
from the mean, divided by either n or by n − 1. There is endless confusion
about which denominator to use. This is compounded with the mystical
powers of the concept of degrees of freedom 5.

The textbook adopts the terminology mean square for

s2 =
1

n

∑
(Yi − Y )2 ,

and sample variance for

s2 =
1

n− 1

∑
(Yi − Y )2

5 The name degrees of freedom comes from some obscure physics analogy. An object
free to move in 3 dimensions is said to have 3 degrees of freedom. If it moves on a table,
there is one constraint, �xed z, and is free to move along x and y: 2 degrees of freedom.
If it is on rails, there are two constraints, and 3− 2 = 1 degree of freedom. In computing
the sample variance, the mean is one constraint: �xing it, the observations cannot take
on any arbitrary values, they have to sum to n times the mean; they have n− 1 �degrees
of freedom�. In other instances one estimates a certain number of parameters, and it is
then said that the number of degrees of freedom is n minus the number of parameters.
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(but uses the same symbol). We will use this convention, just be aware that
this is not standardized.

Anyway, note that the mean square is the variance of the empirical distri-
bution, by the general de�nition of variance of RVs.

One justi�cation for the use of n − 1 in the sample variance is that then
E[s2] = V [Y ] = σ2, that is, it is an unbiased estimator of the population
variance 6. On the other hand, the standard error of the mean square is
lower. In fact, it can be shown that using a denominator n + 1 gives a
standard error even lower, at the cost of more bias. It seems common to
believe that any bias is �bad�, but a recurring theme throughout statistical
theory is the balancing of bias and variance.

The sample standard deviation is the square root of the sample variance.
The square root of the mean square is frequently called the root mean

square (RMS). Both are biased estimators of the population standard de-
viation 7.

4.2 Standard error of the mean

As shown in Section 3.1, the standard error (SE) of the mean (its standard
deviation) is σ/

√
n. Because σ is generally unknown, the SE is estimated

by

sY =
s√
n
,

which is also called the standard error of the mean, or more precisely, the
estimated standard error.

There should be no confusion with the standard deviation (SD) s, they are
di�erent things. The SD s is an estimate of σ, the SD of the population or,
equivalently, the SD of a single observation Yi. The SE sY is an estimate of
the SD of the mean Y , which is obviously smaller.

6 E[
∑

(Yi − Y )2] =
∑
E[((Yi − µ)− (Y − µ))2] =

∑
E[(Yi − µ)2 − 2(Yi − µ)(Y − µ) +

(Y − µ)2] =
∑

(σ2 − 2σ2/n+ σ2/n) = nσ2(1− 1/n) = σ2(n− 1). The middle term in the
binomial expansion works out like this: 2E[(Yi−µ)(Y −µ)] = 2E(Yi−µ)

∑
j(Yj−µ)/n] =

2E[(Yi − µ)2]/n = 2σ2/n, because E[(Yi − µ)(Yj − µ)] = Cov(Yi, Yj) = 0 for i 6= j.
7 For any function g, E[g(Y )] 6= g(E[Y ]), unless g is linear or the variance is 0. Jensen's

inequality is more speci�c: if g is convex (the curve bulges downward), then E[g(Y )] ≥
g(E[Y ]), if g is concave, then E[g(Y )] ≤ g(E[Y ]). The square root is concave, therefore
E[s] < σ.
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4.3 Moments, skewness, kurtosis

For an RV, the r-th central moment is the expected r-th power of the de-
viations from the mean. For a sample, it is the r-th central moment of its
empirical distribution:

CMr =
1

n

∑
(Yi − Y )r .

Clearly, CM1 = 0, and CM2 equals the mean square, or the variance in the
case of the RV or population.

The skewness (for both samples and populations) is g1 = CM3/CM
3/2
2 , and

is a measure of asymmetry. For a normal distribution g1 = 0.

The kurtosis is g2 = CM4/CM
2
2 − 3, where the 3 is subtracted so that for a

normal g2 = 0. It is said that it measures how �at the PDF is, or how heavy
the tails are, although there has been some discussion in the literature on if
this is always true.

As seen in the Lab, the variabilities of g1, and especially g2, are rather large,
so that they may not be all that useful in practice8.

4.4 Quantiles

Quantiles are RV values that correspond to a given probability in the CDF.
That is, a p-quantile is F−1(p). Same for samples, using the empirical CDF.
Various conventions are used in samples and discrete distributions for values
�in-between�, see the R Help for quantil (remember what happens with the
median if n is even).

They can be used to summarize spread (and also location). Special cases
are the median (p = 0.5), quartiles (p = 0.25, 0, 5, 0.75), deciles (p =
0.1, 0.2, . . . , 0.9), the minimum (p = 0), and the maximum (p = 1) 9.

8 Moments higher than the second or third, and more generally, the determination
of distribution shape, require samples of astronomical size to get a reasonable precision.
The variability tends to be underestimated by many researchers, who put too much faith
on distributions obtained by sampling. For instance, tree diameter distributions in forest
ecology. In fact, I cheated a bit going through several samples to get a decent picture for
Figure 1; if you try it you will see that most samples look rather horrible.

9 Common measures of spread or variability based on quantiles are the range, which
is the distance between the minimum and maximum, and the inter-quartil range, the
distance between the �rst and third quartile.
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Box plots are graphical descriptions of samples based on quantiles, and some-
times other statistics (there are a number of variations).

4.5 Other

The coe�cient of variation (CV) is σ/µ for a population, and s/Y for a
sample. It is commonly given as a percentage.

As already seen, in a Poisson point process, that is, points scattered inde-
pendently at random and homogeneously (constant rate) over time or space,
the counts in a random plot or interval has a Poisson distribution. Both the
mean and variance equal the rate parameter λ. Therefore, the coe�cient of

dispersion s2/Y is used to assess deviations from �randomness�.

5 Con�dence intervals

Con�dence intervals are calculated so that there is a given probability of
the interval containing a parameter. The ends of the interval are statistics
(functions of the sample), and therefore are RVs. In Classical Statistics the
parameter is an unknown but �xed number.

5.1 Interval estimation of µ, large samples

Whatever the distribution of Y , for �large� n the sample mean Y is approx-
imately normal (Central Limit Theorem, Lab 5). Moreover, we know the
mean and standard deviation (standard error), so that approximately

Y ∼ N(µ, SE) ,

with SE = σY = σ/
√
n. Assume that s is a good enough estimate of σ, as it

should be in large enough samples, so that we use the estimated SE.

r

µ Y

Y − r Y + r
Y
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We want to �nd a (random) interval [Y − r, Y + r], such that the interval
will contain µ with probability 0.95. We need the �radius� r.

r

µY

Y − r Y + r
Y

r

µ Y

Y − r Y + r
Y

It is seen from this picture that the interval contains µ if Y lies between µ−r
and µ+r. Or, if Y −µ lies between −r and r. Clearly, Y −µ ∼ N(0, SE). Let
F (y) be the CDF for this distribution. Then, we want an r such that

F (r)− F (−r) = 0.95 .

Plugging in the estimated SE, we could solve this numerically for r. In R,
for instance, this can be done using pnorm and uniroot.

Traditionally, however, one goes a bit further. For more generality, and
because statistical tables were only for the standard normal. We can stan-
dardize dividing by the SE:

Y − µ
SE

= Z ∼ N(0, 1) .

Making r = kSE, we look now for a k such that the probability of Z being
between −k and k is 0.95:
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There are a few ways of �nding k from the areas under the standard normal
PDF, see the picture. For instance, the probability of values less than k
must be 0.975: F (k) = 0.975, or k = F−1(0.975), where F−1 is the stan-
dard normal quantil function. For qnorm(0.975, 0, 1), R gives 1.959964.
Remembering that r = k SE = 1.96 SE, we conclude that the con�dence
interval is

[Y − 1.96 SE, Y + 1.96 SE] .

Or approximately, Y ± 2 SE.

5.2 Interval estimation of µ, small normal samples

Here we assume that the Yi are normal, or at least that Y is nearly normal.
Above we assumed that the estimated SE was close enough to the popula-
tion SE, so that Z was standard normal. In smaller samples this may not
be so good; the estimated SE is a random variable, and Z is not normal
anymore.

There are three very important distributions derived from the normal in
statistics:

One is the distribution of the square of a normal RV, and more generally, the
distribution of a sum of squared normals. It is called the χ2 distribution. The
sample variance is (a multiple of) a sum of squared normals, and therefore
s2 ∼ χ2 (I will not bother with the distribution parameters).
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The second is the distribution of the ratio of a normal and the square root
of a χ2. Just like Z. It is called the t distribution, or Student's t.

The third is the distribution of a ratio or χ2's, the F distribution. Used in
analysis of variance, among other things.

Here we need the t. The procedure is the same as before, except that instead
of k being a normal quantil, it is a t-distribution quantil, popularly called
the �t-value�. The t-distribution has one parameter, called the degrees of
freedom, which in this case is n−1. If n is large, the t quantil is close to the
normal 1.96, for smaller n it is slightly larger.

5.3 Bayesian interpretation

Bayesians think of µ as having a probability distribution, a prior before look-
ing at the data, and a posterior after. A more straightforward interpretation
then makes sense, µ has a given probability, e.g., 0.96, of being inside the
observed interval. If the prior is ��at�, re�ecting complete prior ignorance,
the numerical results are exactly the same as before. But the interpreta-
tion is di�erent, and the interval is sometimes called a credibility interval to
distinguish it from the classical con�dence interval.
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