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1 Random variables

A random variable (RV) is a variable taking values determined by a random

phenomenon. More precisely, as indicated before, it is a function assigning a

number to each outcome (sample point). Or one might think of the outcomes

as being numerical from the start. Anyway, from now on we deal only with

RVs, without concerning ourselves with what might be behind those numbers

(at least for mathematical manipulation purposes).
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For RVs, the probability model (sample space and probability function) is

commonly called a probability distribution. The sample space is taken as

the whole real line (the set R of all the real numbers), even though many

or most of the events there might have probability 0. Usually the RV (the

function) is represented by capital letters near the end of the alphabet, like

X and Y , while the corresponding lower-case letters are used for the RV

values (numbers).

It should be clear from the de�nition that any function of RVs is also an

RV. The original outcomes (e.g., 1 for observing a female moose and 0 for

observing a male) are mapped into numerical outcomes in a new sample space

(e.g., the number of females in a sequence of 4 observations). Actually, the

new sample space looks the same as the old one(s), it is R, so we do not

need to worry about it (although the events with non-zero probability may be

di�erent). The new probability distribution can be derived from the original

one(s). Much of Statistics deals with these RV transformations.

The analogy of a probability distribution to the distribution of mass over

a line (string or wire) is almost perfect, and should help in understanding

what follows. Continuous RV's can take any values over a (�nite or in�nite)

interval, corresponding to a typical solid wire. If the density (or thickness)

of the wire varies smoothly over its length, one could draw that density as a

smooth curve, and the mass of any piece of wire is the area under the curve.

Same with the probability density function (PDF), the only di�erence is that

the total mass is 1.

A discrete RV has non-zero probability only on a �nite or countably in�nite

set of points (usually integers). The mass on the line in concentrated into

those points: the density is 0, except for a number of �spikes�. Of course,

there is also the possibility of an RV being partly continuous and partly

discrete, but we will only consider the two simple types1.

One speaks also of discrete and continuous distributions, referring to the

probability models based on the respective RV types.

1 Almost everything will be also valid for the multivariate case of more than one RV,
substituting vectors for the simple numbers (scalars). Think of the wire changing to a �at
plate, or to a solid volume. But we will stick to univariate RVs here.
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2 Specifying the probability

The probability function, de�ned over sets (events), is not very convenient

to work with. However, set probabilities can be calculated using two simpler

functions from numbers to numbers, the probability density function (PDF),

or the cumulative distribution function (CDF). The domain of these func-

tions, the set over which they are de�ned, is R.

2.1 Discrete

For discrete RVs, it is easy to give simply the probabilities of the discrete

outcomes. The probability for any other event can be obtained by adding

these over the relevant set. The function that gives these probabilities for

each point (the height of the spikes) is usually called the PDF, by analogy

with the continuous case2. Typical notations are

f(x) , f(xi) , p(x) , p(xi) , or pi .

Here {xi} or (x1, x2, . . . ) are the possible outcomes, the function is 0 else-

where.

The CDF F (x) is the probability of X ≤ x, for any real number x. In other

words, the probability of the event consisting of all the sample points xi that
are smaller than or equal to the given number x. Therefore,

F (x) =
∑
xi≤x

f(xi) .

It is seen that this is a step function.

The CDF is more useful with continuous distributions. Even in the discrete

case, however, it can simplify some calculations. Suppose, for instance, that

the xi are in increasing order, and that we want to obtain the probability

of the values between x5 and x12, inclusive. With the PDF it would be∑12
i=5 f(xi). With the CDF, the probability is F (x12)−F (x4) (why?).

2 Sometimes called the probability mass function, among other names. The textbook
uses distribution function, which elsewhere normally refers to the CDF. I will stick to PDF
and CDF to avoid confusion.
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2.2 Continuous

For continuous RVs (continuous distributions), it may be easier to start with

the CDF. It is the same as before, F (x) = P (X ≤ x). This is shorthand for

P ({X such that X ≤ x}), or P ((−∞, x]), where (−∞, x] is the interval of

the real line containing x and all the points to the left of it3.

The CDF can be used to calculate probabilities for any set (event) obtainable

through set operations on intervals, which should include all the events of

practical interest. For instance,

P (X > x) = P ((x,∞)) = P ((−∞, x]) = 1− F (x)

P (a < X ≤ b) = P ((−∞, b] \ (−∞, a]) = F (b)− F (a)

(here (a, b) denotes an open interval, not a pair!)

In particular, for an interval of length ∆x starting at x, the average proba-
bility density, that is, the probability per unit length, is

P (x < X ≤ x+ ∆x)

∆x
=
F (x+ ∆x)− F (x)

∆x
=

∆F

∆x
.

This is the slope of the curve F (x) over the interval, height di�erence divided
by distance. As ∆x becomes smaller, this becomes the probability density

function (PDF)

f(x) =
dF

dx
,

the slope of F (x) at x. With some care, it can be shown that this works also

for discrete distributions and gives the same PDF that we had before, so we

are OK using the same name.

The probability of an interval can be obtained as the area under the PDF

curve, in addition to as the di�erence between the CDF values at the ends as

shown before. This can be seen by dividing the interval into small segments;

the probability of each of them equals roughly its density multiplied by its

length (think of the piece of wire). So that the probability for the interval

is a sum like ∑
x

f(x)∆x ,

3 The textbook writes F (x) = P (X < x), which is the same for continuous RVs because
then the probability of x is 0. It may not be if the RV is not continuous; the de�nition
above is the standard one.
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which corresponds to the (approximate) area under the f curve. As ∆x gets

smaller the approximation improves, and the sum tends to an integral. Or

one can use the fact that the derivative and the integral are inverses of each

other. Either way,

F (x) =

∫ x

−∞
f(x) dx .

We conclude that either the PDF or the CDF characterize a probability

distribution model, and can be used to obtain the probability for any events

of interest4.

3 Expectation and variance

The expected value or expectation of a random variable is essentially a weighted

average, de�ned for discrete RVs as

E[X] =
∑
i

xif(xi) ,

and similarly,

E[X] =

∫ ∞
−∞

xf(x) dx

for continuous. The notation E[X] = µ (for mean or population mean)

is sometimes used. It is a characteristic of the distribution that describes

a central point around which the probability is distributed. In the mass

distribution example, it is the centre of gravity.

From the linearity of sums and integrals, it follows that E is linear:

E[X + Y ] = E[X] + E[Y ] , E[aX] = aE[X] ,

E[aX + bY + c] = aE[X] + bE[Y ] + c ,

for any RVs X and Y , and any constants a, b, c.

The variance is a measure of spread or variability, de�ned as the expectation

of squared deviations:

V [X] = σ2(X) = E[(X − µ)2] .

4 For a vector RV, X ≤ x is de�ned as Xi ≤ xi for all the vector components. Draw
the two-dimensional interval for a two-dimensional RV. Then F (x) and f(x) are surfaces,
and similarly in higher dimensions.
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Sometimes its square root, the standard deviation σ, is more useful, carrying

the same measurement units as X and the mean.

From the de�nition, it is easy to see that

V [aX + b] = a2V [X] .

If X and Y are independent RVs, then5

V [X + Y ] = V [X] + V [Y ] (X,Y independent) .

4 Common distributions

4.1 Discrete

The Bernouilli applies to RVs that can only take the values 1 or 0. The

PDF is f(1) = p, f(0) = 1− p, and f(x) = 0 elsewhere; p is the distribution
parameter.

The binomial distribution usually arises as the number X of ones in n inde-

pendent Bernouilli trials. The PDF is

f(x) =

(
n

x

)
px(1− p)n−x for x ∈ {0, 1, . . . , n} ,

f(x) = 0 otherwise.

The mean is E[X] = np.

The Poisson distribution approximates the binomial when n is large and p
is small, with np = λ. It is also appropriate when things happen �randomly�

at a constant rate λ over space or time. The PDF is f(x) = λx exp(−λ)/x!
over the non-negative integers. It has one parameter, λ, which is also the

mean.

4.2 Continuous

A uniform RV has a �at PDF over an interval [a, b], 0 elsewhere. Since the

area under f must be 1, f(x) = 1/(b − a) over [a, b]. The CDF F (x) must

5 V [X + Y ] = E[((X + Y ) − (µx + µy))
2] = E[((X − µx) + (Y − µy))

2] = E[(X −
µx)

2 + 2(X − µx)(Y − µy) + (Y − µy)
2] = V (X) + 2Cov(X,Y ) + V [Y ], where Cov is the

covariance; Cov(X,Y ) = 0 if X and Y are independent.
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be 0 for x < a, it has a constant slope f(x) = 1/(b − c) over the interval,

and then it must be 1 for x > b. That is,

F (x) =


0 if x < a
x−a
b−a if x ∈ [a, b]

1 if x > b

The mean is clearly the interval mid-point E[X] = (b− a)/2.

The normal or Gaussian is the most important distribution in Statistics.

The PDF is positive over the whole real line, although fast decreasing in

value away from the centre, in the form of a bell-shape curve. The standard

normal PDF is

f(x) =
exp(−1

2x
2)

√
2π

.

√
2π is the integral of exp(−x2/2) over (−∞,∞), and needs to be included

for the area under f(x) to be 1. The mean is 0, and the variance is 1. This

RV can be scaled and shifted:

σX + µ = Y ,

and Y has then the general normal distribution with parameters µ and σ.
From the properties of expectation and variance, E[Y ] = σE[X] + µ = µ,
and V [Y ] = σ2V [X] = σ2, justifying the choice of symbols. The notation

X ∼ N(µ, σ) may be used to mean �the RV X has a normal distribution

with parameters µ and σ�.

The sum of two normal RVs is also normal. More generally, any linear

combination of normals is normal. The mean and variance of linear functions

have already been given in Section 3.

The normal CDF F (x) =
∫ x
−∞ f(x) dx cannot be written in terms of elemen-

tary functions (logs, exponentials, square roots, and such)6. The integral has

to be evaluated numerically for speci�c values of µ and σ, or statistical tables
or software can be used (pnorm in R).

If Y is normal, then X = exp(Y ) has the log-normal distribution. Or the

other way around, an RV is log-normal if its logarithm is normal. Because

exp is always positive, the PDF f(x) and CDF F (x) are non-zero only for

positive x.

6 It can be written in terms of special functions, such as the complementary error

function erfc: F (x) = 1
2
erfc(µ−x√

2σ
).
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The exponential is another distribution with non-negative RVs (including 0

this time). The PDF is f(x) = β exp(−βx). Integrating (Maxima, Maple,

Wolfram Alpha!), we obtain the CDF F (x) = 1−exp(−βx). There is a rela-
tionship with Poisson processes, where things happen or appear randomly at

a constant rate in space or time: the distance between successive occurrences

in one dimension, or the distance between nearest neighbours in the plane,

are exponentially distributed.

5 The Central Limit Theorem

Consider a sequence of independent an identically distributed RVsX1, X2, . . . , Xn,

each having mean µ and variance σ2. For instance, a sample of n observa-

tions. The sum is Sn =
∑

iXi, and the (sample) mean is Xn = Sn/n.

From Section 3, we know that

E[Sn] = nµ , E[Xn] = µ ,

V [Sn] = nσ2 , V [Xn] = σ2/n .

Note that as n increases, the mean becomes more precise (its variance de-

creases), as one might expect.

From the previous section, we know that linear functions of normals are

normal. Therefore, if Xi ∼ N(µ, σ), then Sn ∼ N(nµ,
√
nσ), and Xn ∼

N(µ, σ/
√
n). The Central Limit Theorem says that this is also approxi-

mately true for non-normal RVs, when n is large enough.

More precisely, the Central Limit Theorem says that the distribution of the

sum or average of n independent and identically distributed RVs tend to a

normal distribution as n tends to in�nity7. Depending on the exact wording

and method of proof, we might want to avoid the mean or variance tending

to in�nity, or the variance tending to 0, by scaling the RVs. So, another

version of the theorem says that the standardized sum Sn−nµ√
nσ

tends to a

standard normal N(0, 1) as n→∞.

Under some additional conditions, the theorem is also true for non-identically

distributed RVs, and even under some forms of dependency. It justi�es using

the normal distribution as a model in situations where one might think of

variability as the result of many unspeci�ed causes. It justi�es also taking

7 The RVs must have �nite variance, there are some unusual distributions that do not.
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of a sample mean as approximately normal in �large samples�, regardless of

the distribution of the underlying RV.

9


	Random variables
	Specifying the probability
	Discrete
	Continuous

	Expectation and variance
	Common distributions
	Discrete
	Continuous

	The Central Limit Theorem

