FSTY 405 - Silviculture II

Final Exam, 14th December 2004

Name:

Student number:

- Ensure that your name and student number are correctly entered above.
- Answer in the spaces provided after each question, writing down clearly the intermediate steps. Use the reverse as scratch pad. Writing just the final numerical answer is not acceptable.
- Write clearly, and use ink, not pencil.
- Pages: 5. Questions: 5 out of 6 , worth 5 marks each, total 25 . Cross-out clearly the number of the question that you want excluded. Otherwise I will drop the one with the highest marks!
- Answer clearly and to the point. Nonsense is penalized.
- Info (you may or may not need this): $\ln x y=\ln x+\ln y, \quad \ln x^{y}=$ $y \ln x, \quad y=\ln x \Leftrightarrow x=\mathrm{e}^{y}, \quad \mathrm{e}^{x+y}=\mathrm{e}^{x} \mathrm{e}^{y}$. Circle area $=\pi r^{2}$.

1. Which of the BC growth models would be the most appropriate in the following situations, and why?
(a) Projecting the development of an uneven-aged stand in the Southern Interior.
(b) Comparing planting patterns, e. g., square, triangular, or rectangular grids.
(c) Predicting growth of an aspen stand near Fort Nelson.
2. A stand has 700 stems per hectare, 22 m top height, and a (quadratic) mean dbh of 30 cm . We have a height growth function

$$
\ln H=3.6-32 / t
$$

and a stand volume function:

$$
\ln V=0.9 \ln B+1.1 \ln H-0.9
$$

where H is top height in m, t is age in years, V is volume in $\mathrm{m}^{3} / \mathrm{ha}$, and B is basal area in $\mathrm{m}^{2} /$ ha. Calculate the mean annual increment.
3. With the following graph,

(a) Label the continuous curves with the corresponding site index on the right edge of the graph. Index age is 50 years (breast-height age).
(b) Find the age at which top height is 25 m in site 21. Mark the relevant point(s) on the graph.
4. We have the following model,

$$
\begin{aligned}
\Delta H & =0.10(32-H) \\
\Delta N & =-0.028 N \\
\Delta B & =0.08 B+(41+0.018 N-3.2 B) / H \\
V & =0.3 B H-4.2
\end{aligned}
$$

where H is top height $(\mathrm{m}), N$ is trees per hectare, B is basal area ($\mathrm{m}^{2} / \mathrm{ha}$), and V is volume ($\mathrm{m}^{3} / \mathrm{ha}$). Increments are for 5 -year periods. A 30 year-old stand has $H=14, N=1000, B=18$. At age 35, 50% of the trees and 40% of the basal area are removed in a thinning. Estimate the volume at age 40.
5. What is, explain:
(a) Tree competition index?
(b) Growth intercept?
(c) Pressler's law/hypothesis (pipe model theory)?
(d) Expansion factor?
6. Draw a System Dynamics (rate-level, Vensim) diagram for the model of question 4 .

