
Individual-tree
Distance-dependent
Tree growth depends of its size, and size and 

position of others:

Distance-independent
Tree growth depends of its size, and size of 

others:

 

z: tree “size”, possibly a vector.  E.g., dbh, or dbh and height. 
p: tree position (x-y coordinates) 
c: competition index 

 

Not a clearcut    ;-) 
Distance-independent requires less state information.  But 

can only model well stands that are spatially 
homogeneous. 

 

 

Spatial heterogeneity

 

Tree locations are essential for some purposes. 
Figure from presentation by Jim Goudie on variable 

retention simulation with TASS, at 
http://westernforestry.org/wmens/m2003/m2003_agenda.
htm. 

http://westernforestry.org/wmens/m2003/m2003_agenda.htm
http://westernforestry.org/wmens/m2003/m2003_agenda.htm


Tree lists
List:    d = (37.0, 18.8, 27.3, 25.5, 31.3 ,32 
.0, 41.6, 33.6, 9.8, 41.9, 23.6, 11.4, 28.8, 
27.4, 31.5, 12.3, 27.0, 23.5, 24.4, 15.6, 
30.6, 31.1, 5.9, 31.3, 10.9, 27.2, 24.4, 36.3, 
40.2, 13.8)
Expansion factor (weights):    w = (20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20)

 

d and w define the state of the stand. 
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Lists and Distributions

 

Tree list is essentially equivalent to a discrete distribution. 
Weights (bar heights) could vary. 
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Lists and Distributions

 

Example 40 trees were selected at random from this 
distribution density. 
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Lists and Distributions

 

The cumulative sample distribution (aka empirical 
distribution function). 
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Compared to the “true” population distribution.  Variability 
in the observed distribution shape can be large. 
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Distance-independent (aspatial)
Size: usually dbh (or tree basal area)
Tree list:                      (d1, d2, d3, ...)
Expansion factors:      (w1, w2, w3, ...)
Density / competition:  N, B, CCF, BAL, etc.
Growth:   ∆ di = f(di, N, B, ...)
Mortality:   Prob{i dies} = g(di, N, B, ...)              
! ∆ wi

Regeneration / ingrowth

 

State: {di, wi} 
N, B, etc., summarize effect of the other trees.  Similar to tree 

competition indices in distance-dependent. 

Density measures / indices
Simple:  N, B
Stand density indices:  

Relative spacing    s / H  / 1 / H N1/2 

Reineke’s density index    / ND1.605

Crown competition factor  (CCF)  
Tree competition indices:

Rank
Basal area of largest trees (BAL)

 

Density indices attempt to summarize in a single number the 
degree of crowding, independently of age, etc. 

One could use a pair or triple of numbers instead. 
CCF:  Crown Competition Factor, ratio of estimated open-

grown tree crown projection area to the average space per 
tree in the stand (stand level).  There are also individual-
tree CCFs, i.e., values calculated for each tree (tree 
competition index). 

BAL:  Basal area of all trees larger than the given tree. 



BC distance-independent models
PrognosisBC

Southern Interior, “complex” stands
USFS FVS (ex Prognosis, Stage 1973)
Northern Idaho variant, adaptation underway

MGM  (Mixewoods Growth Model)
Steve Titus, U. of Alberta
Aspen + white/black spruce, aspen + lodgepole/jack 
pine
Alberta, BC, Saskatchewan, Manitoba

STIM
 

http://www.for.gov.bc.ca/hre/gymodels 

FVS / PrognosisBC

Initial conditions
Site quality: habitat, slope, aspect, elevation
Tree list: d, w, species.  Optional h, ∆d, ∆h
Crown ratio?
Estimate missing h’s

h = 1.3 + exp[ β0 + β1 / (d+1) ]

“Calibrate” if ∆d or ∆h given

 

So-called “height dubbing” estimates h  from a fixed  h-d  
relationship.  Ignores effects of stand density on dbh for a 
given height. 

FVS / PrognosisBC

Growth.  Small (d < 3”), large trees (d ¸ 3”)
Tree basal area

ln ∆b = β0 + β1 D + β2 D2 + β3 CCF + β4 BAL + β5 c +   
β6 c2 + random (large trees)

c = crown ratio = f(d, h, rank, B, CCF)

Height
ln ∆h = β7 + β8 ln d + β9 ln h + β10 h2 + β11 ln ∆b   (large)

Mortality
Probability of dying is a (complicated) function of 

the state variables.  Changes w.
 

Convention: lower-case variables are tree-level, upper case 
stand-level (usually). 

Different relationships for “large” and “small” trees. 
Coefficients vary with species and site. 
The model crown ratio relationships are adjusted 

(“calibrated”) if initial values are given.  But then at each 
step the ratio is estimated from the other variables, rather 
than being projected (output, not state). 

FVS / PrognosisBC

Regeneration / ingrowth
Not available in PrognosisBC

Thinning / partial cutting
Summaries, outputs (volume, etc.)

Discrete (10-yr steps)
Stochastic (only in ∆b)
User interface

FVS:  Command language
PrognosisBC:  GUI

 

Stochastic (in b-increment), discrete time (10-year steps). 



MGM
Boreal aspen
Deterministic.  DBH increment = f(DBH)
Implemented as Excel macros

 

STIM can be used as distance-independent or as whole-stand 
model. 

Size-class models

 

Trees grouped in classes (histograms). In mixed stands, by 
species or species groups. 

Tree lists change through displacement of the individual 
trees, and possibly changes in the weights.  In size-class 
models, some proportion of trees moves from one class to 
the next. 

Intermediate level of detail between individual-tree and 
whole-stand. 

Stochastic vs. Deterministic
Random (or pseudo-random) numbers

Start with random seed
Next number: e.g. multiply by a constant and 
ignore leading (binary) digits

Random? Probability? Exist in “reality”?
Model to represent ignorance
Unpredictable, given what we know

Stochastic models use random numbers. 
Stochastic = random = probabilistic. 
Probability best seen as a way of modelling a state of 

knowledge or ignorance. 
Random numbers are perfectly predictable if we know the 

generator formula, unpredictable otherwise. 

Stochastic vs. Deterministic
Appearance of “realism”
Assessing variability, uncertainty

Repeated simulations
Uncommon in practice
Sometimes the random seed is hardwired

Handling issues of averaging / aggregation

Realism not necessarily a good thing. 
Managers often only need or can use a single “most likely” 

value. 
Stochastic elements can be an easy way of properly 

approximating averages of nonlinear functions. 



Example: mean tree basal areas
Method 1:   d  → k d2 → Mean(k d2)
( 4, 8, 10) →

Method 2:   d  → Mean(d) → [Mean(d)]2

mean(f(x)) ≠ f(mean(x))

 

 

Jensen’s inequality

x1 x2

 

Averaging is common in many modelling applications.  
Jensen’s inequality deals with its effects. 

Jensen’s inequality

x1 x2x
_

f(x)
_

 

Function of an average. 

Jensen’s inequality

x1 x2x
_

f(x)
_

f(x)
___

 

Average of a function. 



Jensen’s inequality

x1 x2x
_

f(x)
_

f(x)
___

f(x) convex ) f(mean) < mean(f)  

Introducing stochastic components is a simple way of coping 
with consequences of Jensen’s inequality.  There are 
others. 

Advantages of individual-based 
“Easy” to understand

Low level of abstraction
“Simple”

Substitute aritmetic for higher math
Less aggregation issues

Good research tools
Synthesise knowledge, formulate hypotheses
“The sky is the limit”
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A limitation is the often imprecise knowledge of the highly 
detailed starting state (initial conditions). 

E.g., in distance-independent models, tree lists or size 
distributions have a high sampling error. 

Distribution sampling

Samples of 50

 

Simulated 20 samples of 50 trees each.  Means OK, but 
shape is uncertain. 

Other problems and issues with individual-based models in 
http://forestgrowth.unbc.ca/warsaw.pdf

 

http://forestgrowth.unbc.ca/warsaw.pdf

