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The Physical Foundation of the Mind 
 

Jing Chen 
Abstract 
The mind of animals, just like the bodies of animals, is shaped by natural 
selection to best adapt to physical laws. Specifically, the mind is evolved to 
search for natural resources at low cost. Since entropy provides a universal 
measure of resources, it is inevitable that information, which we collect for our 
survival, is represented by the entropy function mathematically. When 
observing the problems of the mind from the lens of physical laws, many 
complex and confusing problems become simple and clear. As an example, we 
present a mathematical theory on the value of judgment in this paper. It is 
generalized from the entropy theory of information when subjective 
assessment of the probability distribution of a random event differs from the 
objective probability distribution. The formula of the value of judgment defined 
in this theory bridges the chasm between the concept of information and 
cognitive bias. We prove that the first order approximation of the expected 
rate of return of the portfolio constructed from a certain judgment is equal to 
the value of the judgment defined in this theory. This theory on the value of 
judgment, together with other recently developed theories, shows that 
research on mind, just like research on matter, can be carried out in an 
analytical, quantitative and systematic way from the foundation of physical 
laws.  
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Introduction1 
To gain a deep understanding of human mind, 
we must first understand why and how the mind 
is evolved. Most would agree that the 
streamlined shape of fish is an adaptation of 
aquatic environment to reduce the cost of 
swimming. Similarly, the mind of human beings, 
as well as other animals, is evolved to find 
resources with low cost. While the forms of 
natural resources are diverse, most natural 
resources can be understood from a unifying 
principle. A system has a tendency to move from 
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a less probable state to a more probable state. 
This tendency of directional movement is the 
source of useful energy that drives, among other 
things, the living organisms.  Intuitively, natural 
resources are something that is of low 
probability, or scarce. The dissipation of a 
system from a low probability state into a high 
probability state provides the energy we use.  

The measure of probability of a system is 
called entropy in physics. In a formal language, 
systems move from low entropy state to high 
entropy state. Since all living organisms need to 
extract low entropy from the environment for 
survival, it is inevitable that the human mind is 
evolved to identify entropy easily. This explains 
why information, which we collect for our 
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survival, is represented mathematically by the 
entropy function. Human mind, including innate 
mathematical ability, is evolved to reduce the 
cost of identify natural resources. When 
observing the problems about the mind from the 
lens of physical laws, many complex and 
confusing problems become simple and clear. 
For example, the entropy theory offers a unified 
understanding of the common patterns of the 
human mind documented in literature (Chen, 
2003, 2005). In this work, we will show how the 
intuition from statistical mechanics helps us 
develop a mathematical theory on the value of 
judgment.  

Superior investment returns are often 
attributed to superior information processing 
capabilities of investors. Inferior investment 
returns are often attributed to inferior cognitive 
capabilities of investors. While investment 
return can be quantified, there does not exist a 
quantitative measure of judgment. We will 
develop a mathematical theory of judgment. It 
provides a quantitative measure on the value of 
judgment.  

This theory of judgment is generalized 
from the entropy theory of information.  From 
information theory, the value of information of a 
particular state is the log function of the 
probability of that state. The value of 
information of a random event is the average of 
information value of each possible state of the 
random event, which is the entropy of the 
random event. In decision making process, the 
default position is usually taken to be the 
maximum entropy equilibrium state. Since no 
additional information is required to determine 
the equilibrium state, the value of information 
from the decision making perspective is the 
entropy of the random event minus the 
maximum entropy.  

The subjective judgment of the probability 
of a state by a person may differ from its 
objective probability. We propose that, the value 
of judgment of a particular state is the log 
function of the subjective assessment of the 
probability of that state. The value of judgment 
of a random event is the average of value of 
judgment of each state, weighted by the 
objective probability distribution of the random 
event. We will call this value subjective entropy. 
Similar to value of information, we define value 
of judgment from the decision making 

perspective as the subjective entropy minus the 
maximum entropy.  

Mathematically, suppose {p1, …pn} is the 
objective probability distribution of a random 
event and {q1, … qn} is the subjective judgment of 
the probability distribution by someone. The 
value of information is 

1

   ln( ) ln    
n

j j
j

p p n
=

+∑  

 
While the value of judgment is  
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   ln( ) ln  
n

j j
j

p q n
=

+∑  

 
To evaluate the validity of the new theory, 

we will compare the value of a judgment 
calculated from this theory with the expected 
rates of return of the portfolio constructed from 
the same judgment. Investment decisions are 
made according to investors’ judgment about 
stocks. For example, if an investor believes one 
stock will significantly outperform the general 
market, he will put a significant portion of his 
investment fund into that stock. To quantify the 
relation between judgment and investment 
decision, we will consider a simple portfolio with 
only two assets: a risk free asset and a risky 
asset. Based on the subjective assessment of the 
return distribution of the risky asset, an investor 
can determine the optimal portion of the risky 
asset in the portfolio and calculate the expected 
rate of return of the portfolio.  We prove that 
the first order approximation of the expected 
rate of return of the portfolios constructed from 
a judgment is equal to the value of the same 
judgment. This indicates that the value of 
judgment defined in this theory is built on a solid 
foundation.  

There are some other general properties 
from the mathematical theory on the value of 
judgment. First, the value of judgment is always 
lower than or equal to the value of information 
with the same objective probability distribution. 
This means that the value of information is the 
upper bound for the value of judgment. A similar 
idea has been developed in evolutionary biology 
(Bergstrom and Lachmann, 2004). The value of 
judgment is equal to the value of information 
only when the subjective assessment of the 
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probability distribution is identical to the 
objective probability distribution. Therefore, the 
concept of judgment is a generalization from the 
concept of information when a person may not 
have precise estimation of a random event, 
which is the case in most decision making 
processes. The theory of judgment broadens the 
scope of applications with respect to the theory 
of information.  In particular, the values of 
information are always nonnegative while the 
values of judgment can be either positive or 
negative. This means that an active investment 
strategy may earn either positive or negative 
returns with respect to a passive investment 
strategy.  

Second, the value of judgment has its 
parallel in the works of the coding theory. Sims 
(2003) described knowledge as a process of 
coding. A major purpose of coding is to reduce 
the average length of codes from knowledge 
about the probability distribution of events. In 
general, more frequent events are represented 
by shorter codes. This coding process reduces 
the average length of the message. Hence, the 
value of a coding is the reduction of average 
coding length from the generic coding (Cover 
and Thomas, 2006). The value of judgment 
shares the same mathematical formula as the 
value of coding.  

The average length of an actual coding is 
often longer than the theoretically shortest 
length possible. In coding theory, the difference 
between the actual coding and theoretically 
optimal coding is defined by relative entropy 
(Cover and Thomas, 2006), which is the 
difference between the value of information and 
the value of judgment. Hence relative entropy 
can also be used to define the measure of bias in 
the theory of judgment. The parallel between 
the theory of judgment and the theory of coding, 
which is a well established subject, is a further 
indication on the validity of the theory of 
judgment.  

Both the value of judgment and the 
measure of bias are mathematical functions 
whose only variables are objective probability 
distributions and subjective probability 
distributions, i.e., our judgment, of random 
events. This makes it very easy to systematically 
investigate the properties of the theory of 
judgment.  

Third, under certain conditions, a 
judgment that is more biased turns out to be 
more valuable than a less biased judgment. 
Intuitively speaking, an investor who is modestly 
favorable to a stock which turns out to earn very 
high rate of return will perform better than an 
investor who is modestly favorable to a stock 
which turns out to earn moderately high rate of 
return.  This shows that value and bias of 
judgment are two distinct concepts. It will help 
clarify discussion in behavioral literature, which 
often identifies bias with low value of judgment.  

There are several other distinctive 
properties of this mathematical theory of 
judgment, which we will derive later in this 
paper. The theory of judgment bridges the 
chasm between the concept of information and 
cognitive bias. This will help provide a common 
framework for behavioral and informational 
perspectives in understanding financial market. 
A detailed discussion will be provided in a 
companion paper (Chen, 2008). 

This theory comes out of the long term 
effort to understand the Gibbs inequality, a 
result in statistical mechanics from more than a 
hundred years ago. It is also inspired by several 
recent works. Sims (2003) described knowledge 
as a process of coding. I attempt to learn more 
about the coding theory, from which the theory 
of judgment is developed. Bergstrom and 
Lachmann (2004) discussed the relation between 
the entropy measure of information and the 
measure of fitness, which helped me to seek the 
relation between the measure of judgment and 
the measure of investment returns. Qian (2001) 
discussed the usefulness of relative entropy in 
formulating non-equilibrium statistical 
mechanics. This deepens my appreciation on the 
close connection between entropy as a 
mathematical theory and as a physical theory.   

The remainder of the paper is structured 
as follows. Section I presents the generalized 
entropy theory of information. It offers a deep 
connection among information, entropy and 
human mind. In Section II, we will give a detailed 
presentation of the mathematical theory on the 
value of judgment. In Section III, we discuss the 
relation between value of a judgment and the 
expected rate of return of the portfolio 
constructed from the same judgment. Section IV 
concludes.  
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I. Resource, Entropy, Information, and the 
Evolution of Mind  
The entropy theory of information can be traced 
to Maxwell and Boltzmann, the pioneers in 
statistical mechanics. In a famous thought 
experiment called Maxwell’s Demon, Maxwell 
(1871) reasoned that if information is costless, 
then the entropy of the universe can be 
decreased, which violates the second law of 
thermodynamics. Therefore the physical cost of 
obtaining information must be at least equal to 
its entropy value. Boltzmann also linked the 
increase of entropy in a system to the loss of 
information (Isihara, 1971).  Shannon (1948) 
developed the mathematical theory of 
communication by formally defining information 
as the entropy function.  Shortly after Shannon’s 
work, Weaver commented,  

 
“Thus when one meets the concept of entropy 
in communication theory, he has a right to be 
rather excited --- a right to suspect that one 
has hold of something that may turn out to be 
basic and important” (Shannon and Weaver, 
1949, p. 13).  

 
The formal link between entropy and 

information sped up the acceptance of new 
information theory. However, when the 
information theory became firmly established, 
Shannon turned uncomfortable with the early 
and more speculative attempts to apply the 
entropy theory of information to broader areas.  

 
Workers in other fields should realize that that 
the basic results of the subject are aimed at a 
very specific direction, a direction that is not 
necessarily relevant to such fields as 
psychology, economics, and other social 
sciences. Indeed, the hard core of information 
theory is essentially, a branch of mathematics, 
a strictly deductive system. (Shannon, 1956) 

 
Despite many fruitful applications of 

information theory to problems in other areas, 
such as Jaynes (1957), this view remains 
orthodox today, as indicated by the following 
comment: 

 
The efforts of physicists to link information 
theory more closely to statistical physics were 
less successful. It is true that there are 
mathematical similarities, and it is true that 
cross pollination has occurred over the years. 

However, the problem areas being modeled by 
these theories are very different, so it is likely 
that the coupling remains limited.  
 
In the early years after 1948, many people, 
particularly those in the softer sciences, were 
entranced by the hope of using information 
theory to bring some mathematical structure 
into their own fields. In many cases, these 
people did not realize the extent to which the 
definition of information was designed to help 
the communication engineer send messages 
rather than to help people understand the 
meaning of messages. In some cases, extreme 
claims were made about the applicability of 
information theory, thus embarrassing serious 
workers in the field. (Gallager, 2001, p. 2694) 

 
However, the dissonance between the 

entropy function as a mathematical 
representation of information and the practical 
value of information has long puzzled many 
people. Recent works have shown that our 
intuitive concept of information coincides with 
the mathematical definition of information as 
entropy (Adami, 2004; Bergstrom and 
Lachmann, 2004; Qian, 2001). In the following 
we will provide a more formal argument. If a 
decision making process is truly important and is 
needed again and again in life, it is highly 
economical that quantitative modules evolve in 
the mind to expedite the process. For example, 
predators need to routinely assess their distance 
from the prey, the geometry of the terrain, the 
speed differential between itself and the prey, 
the energy cost of chasing down its prey, the 
probability of success of each chase and the 
amount of energy it can obtain from prey to 
determine whether, when and where to initiate 
a chase. There are many other sophisticated 
functions, such as navigation by migrating birds 
over long distances, which need sophisticated 
mathematical capabilities. Many animals need to 
make precise calculations of many of these 
quantitative problems many times in life. To 
reduce the cost of estimation, mathematical 
models must have evolved in their mind so that 
many decision making processes are simplified 
into parameter estimation and numerical 
computation. It is highly likely that, if a function 
is very important for the survival of the animal, 
in the process of evolution, this function will be 
genetically assimilated.  
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From the second law of thermodynamics, 
a system has a tendency to move from a state of 
low entropy to a state of high entropy. This 
tendency of directional movement is the source 
of useful energy that drives, among other things, 
the living organisms. Mathematically, the 
increase of entropy is equivalent to the decrease 
of useful energy, which is defined as free energy 
in physics (p. 85, Avery, 2003). Since all living 
organisms need to extract low entropy from the 
environment to compensate the continuous 
dissipation, and entropy is the only 
mathematical function to measure scarcity of 
resources (Chen, 2005), it is inevitable that 
information, which we collect for our survival, is 
largely about entropy. It is not a mere 
coincidence that our intuitive concept of 
information and the mathematical definition of 
information as entropy largely overlap. The 
intuitive concept is really a simplified evaluation 
of a mathematical computation.  

If Shannon’s entropy theory of information 
is purely a mathematical theory with little 
connection to the physical laws, it would be a 
miracle that information defined as entropy 
turns out to have the magic properties that 
handle technical problems in communication so 
well. However, once mathematical theories are 
thought to be a natural part of our evolutionary 
legacy, it would be natural for the entropy 
theory of information to possess this property.  
  After the entropy theory of information 
was developed in 1948, its technique has been 
applied to many different problems in 
economics and finance. However, the standard 
economic theory of information, represented by 
Grossman and Stiglitz (1980), was not built on 
the foundation of entropy theory. Economists 
often feel that “the well-known Shannon 
measure which has been so useful in 
communications engineering is not in general 
appropriate for economic analysis because it 
gives no weight to the value of the information. 
If beforehand a large manufacturer regards it as 
equally likely whether the price of his product 
will go up or down, then learning which is true 
conveys no more information, in the Shannon 
sense, than observing the toss of a fair coin.” 
(Arrow, 1983) The Shannon measure actually 
carries weight of information. For example, N 
symbols with identical Shannon measure carry N 
times more information than a single symbol 

(Shannon, 1948). Similarly, the value of the 
information about the future price is higher to a 
large manufacturer than to a small 
manufacturer, other things being equal. 

Recently, entropy theory of information 
has been successfully applied to understand 
more economic phenomena. Sims (2003) utilized 
the capacity constraint in information processing 
to explain price stickiness. This concept has been 
applied to better understand some empirical 
patterns in the asset market (Peng, 2005; Peng 
and Xiong, 2006). The significance of this idea is 
that it introduces the physical constraint of 
information processing into economic literature. 
Sims noted, “Readers may recall, if they use 
modems with their computers, that modem 
speeds are rated in ‘bits per second’, or bps. This 
is their channel capacity. Speed increases for 
modems plateaued at 56000 bps, because 
telephone connections are designed to have 
approximated that capacity, so no change in 
modem design can achieve higher speed.” This 
indicates that physical constraints are very 
relevant in information processing and entropy 
theory of information from communication 
theory may play a larger role in understanding 
economic behaviors. Recently, a new theory of 
information was developed to expand Shannon’s 
entropy theory of information into an economic 
theory (Chen, 2003, 2004, 2005). The basic idea 
of this theory is:   

 
Information is the reduction of entropy, not 
only in a mathematical sense, as in Shannon’s 
theory, but also in a physical sense. The rules 
of information transmission developed in 
Shannon’s theory, as mathematical rules, apply 
not only to communication systems, but also 
to all living organisms, including human beings.  
 
 
By understanding information and the 

human mind from the foundation of physical 
laws, we are able to build up the theory of mind 
as a part of physics. Some earlier works have 
shown this has greatly simplified our 
understanding of mind (Chen, 2003, 2005, 2007). 
In the next two sections, we will present a 
mathematical theory of judgment as another 
example how intuition from statistical mechanics 
helps us gain deeper understanding of the mind.  
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II. Value of Judgment and Measure of Bias 
The value of information is a function of 
probability and must satisfy the following 
properties:  
(a) The information value of two events is 

higher than the value of each of them. 
(b) If two events are independent, the 

information value of the two events will be 
the sum of the two.  

The only mathematical functions that satisfy all 
the above properties are of the form 

( ) lnH P k P=                 (1) 
where H is the value of information, P is the 
probability associated with a given event and k is 
a constant (Einstein, 1905; Applebaum, 1996). 
For simplicity, we will take k to be 1 in our paper. 
Formula (1) represents the level of uncertainty. 
When a signal is received, there is a reduction of 
uncertainty, which is information.  

Suppose a random event, X, has n discrete 
states, {x1, x2, …,xn}, with probability {p1, …pn}. 
The information value of X is the average of 
information value of each state, that is 

      
1

( ) ln( )
n

j j
j

H X p p
=

= ∑                (2) 

 
The right hand side of (2), which is the 

entropy function first introduced by Boltzmann 
in the 1870s, is also the general formula for 
information (Shannon, 1948). 

The subjective judgment of a person may 
differ from the objective probability. Suppose 
the subjective judgment of the probability 
distribution is {q1, … qn}. Then the value of 
judgment on each qi, is  

 
                              (3) 

 
The value of judgment of a random event 

is the average of value of judgment of each 
state, weighted by the objective probability 
distribution of the random event.  
 

1

ln( )
n

j j
j

p q
=
∑                 (4) 

Since the above expression will be used 
frequently, we will call it subjective entropy or 
subjective information.  

In a random event with n possible 
outcomes, the state of equal distribution has the 

highest level of entropy. As the state of 
maximum entropy is the state of equilibrium, no 
further information input is required to 
determine the maximum entropy state. From 
the decision making perspective, the value of a 
judgment can be defined as the subjective 
entropy of that particular judgment minus the 
maximum entropy. That is  

1 1

1

1 1
   ( , )  ln     ln( )

               ln   ln  

n n

j j
j j

n

j j
j

V p q p q
n n

p q n

= =

=

= −

= +

∑ ∑

∑
               (5) 

 
When each  
 
 ,                              1j jq p j n= ≤ ≤  

 
The value of judgment becomes the value of 
information.  
 

1

ln( )  ln
n

j j
j

p p n
=

+∑                                (6) 

 
From Gibbs inequality (Gibbs, 1902; Isihara, 
1971), 

1 1

ln( ) ln( )
n n

j j j j
j j

p p p q
= =

≥∑ ∑                                      (7) 

 
with equality achieved if and only if each  
 ,                              1j jq p j n= ≤ ≤  

Therefore, the value of judgment is always less 
than or equal to the value of information with 
the same probability distribution. The difference 
between the value of information and the value 
of judgment is the measure of bias. Hence bias 
can be defined as  

1 1

( , ) ln( ) ln( )
n n

j j j j
j j

B p q p p p q
= =

= −∑ ∑                      (8) 

which is always nonnegative and is zero if and 
only if each  

,                              1j jq p j n= ≤ ≤  

In general, the difference between the first term 
and the second term of formula (8) is smaller 
when qj is closer to pj. Formula (8) is called 
relative entropy in information theory (Cover 
and Thomas, 2006).  
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For the simplicity of exposition, we will 
only consider events with two possible 
outcomes, state 1 and state 2 in the remaining 
part of the paper. When there are only two 
possible states, formula (5) and (8) become 

 
( , )  ln 1 ln 1 ln2V p q p q ( - p) ( - q)  = + +               (9) 

and  
( , ) ln 1 ln(1 )

{ lnq (1-p)ln(1-q) }

B p q p p ( - p) p

p

= + −
− +

                       (10) 

 
We will use some simple calculation to 

illustrate the properties of the value of judgment 

and the measure of bias. First, we will calculate 
the value of the neutral judgment, which will 
give 50% chance to both state 1 and state 2. 
From (9), the value of the neutral judgment is 
 

ln0.5 (1 )ln0.5 ln2 ln0.5 ln2 0p p+ − + = + =  
 

Hence the value of neutral judgment is 
zero, regardless of the actual probability 
distributions of the states. Intuitively speaking, a 
neutral investor does not believe he possesses 
valuable information and puts his money into an 
index fund. 
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Figure 1. Value of judgment. The two curves are the values of judgment at different levels of subjective probability while 

 objective probabilities are {0.6, 0.4} and {0.7, 0.3} respectively.  
 

Figure 1 displays the values of judgment 
with different levels of subjective probability 
estimation when the objective probabilities are 
p=0.7, 1-p=0.3 and p=0.6, 1-p=0.4 respectively. 
From Figure 1, it can be seen that the value of a 
neutral judgment, i.e., q=0.5, is zero. When a 
judgment is at the wrong direction, that is, q<0.5 
while p>0.5, the value of judgment is negative. 
When the judgment is precise, that is, q=p, the 
value of judgment reaches the maximum 
positive value. But even when a judgment is at 
the right direction, that is, q > 0.5 while p>0.5, 
the value of judgment could still be negative. 
Intuitively, suppose a risky asset will outperform 
the market moderately. If the asset is heavily 
weighted in a portfolio, the portfolio will still 

underperform the market on average. 
Comparing the value curves of p = 0.7 and p = 
0.6, we find that when a random event is further 
away from equilibrium, that is, when p is further 
away from 0.5, there is more opportunity that 
the value of judgment will be positive and 
higher. This is consistent with the fact that a 
physical asset that is further away from 
equilibrium is more economically valuable.  

Now consider two random events with 
different probability distributions. Assume in the 
first event, the probability of state 1 is 90% and 
the probability of state 2 is 10%. Someone 
estimates the probability of state 1 is 70% and 
the probability of state 2 is 30%. From (9), the 
value of his judgment is  
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 0.9ln0.7 0.1ln0.3 ln2 0.25+ + =  
In the second event, the probability of state 1 is 
70% and the probability of state 2 is 30%. 
Someone estimates the probability of state 1 is 
70% and the probability of state 2 is 30%. From 
(9), the value of his judgment is  

0.7ln0.7 0.3ln0.3 ln2 0.08+ + =  
From (10), the bias of judgment in the 
estimation of the first event is  

0.9ln0.9 0.1ln0.1 (0.9ln0.7 0.1ln0.3) 0.12+ − + =  
while the bias of judgment in the estimation of 
the second event is zero.  

From the above calculation, we find that, 
under certain conditions, the judgment that is 
more biased turned out to be more valuable 
than an unbiased judgment. Intuitively speaking, 
an investor who is modestly favorable to a stock 
which turns out to earn very a high rate of return 
will perform better than an investor who is 
modestly favorable to a stock which turns out to 
earn a moderate rate of return. In general, we 
have the following propositions. 
 
Proposition 1 
When q > 0.5, the value of judgment is an 
increasing function of p. When q < 0.5, the value 
of judgment is a decreasing function of p.  Proof: 
Rewrite (9) into  

 ( , )  (ln ln(1 )) ln(1 ) ln2 V p q p q - q - q= − + + (11) 
 
This is a linear function of p. Note that  
 
ln ln(1 ) 0 when 0.5q - q q− < <   
and  
ln ln(1 ) 0 when 0.5q - q q− > > .  
 
The result becomes very clear.  
      
Proposition 2 
B(p, q) is an increasing function of p when p > q, 
and a decreasing function of p when p < q 
Proof:  Differentiate (10) with respect to p and 
simplify. We have 

( , ) ln ln (ln(1 ) ln(1 ))
d

B p q p q p q
dp

= − − − − −  

Figure 2 shows the value of judgment and 
measure of bias at different levels of p, assuming 
q is 0.6. From the figure, we can find that when 
the judgment is at the right direction, a 
judgment with a high level of bias is also of a 
high value.  
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Figure 2. Value of judgment and Measure of bias. The straight line represents the values of judgment and the curve is 
the measure of bias at different levels of objective probability. The subjective probability is {0.6, 0.4}. The measure of 
bias is zero when the objective probability equals the subjective probability. 
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Figure 3. Values of different judgments.  The two straight lines are values of judgment with different levels of subjective 
probability estimation. When subjective probability estimation deviates less from neutrality, the value of judgment 
turns positive earlier and the slope is gentler.  When subjective probability estimation deviates more from neutrality, 
the value of judgment turns positive later and the slope is steeper.   

 
 

We further investigate the structure of 
value distribution when people start making 
different kinds of judgments. Since the default 
judgment is q = 0.5, judgments can be classified 
by how far away q is from 0.5. Figure 3 draws 
two lines of value when q is equal to 0.6 and 0.8 
respectively. When q is equal to 0.6, the value 
turns positive earlier and the slope is gentler. 
When q is equal to 0.8, the value turns positive 
later and the slope is steeper. So a more 
extreme judgment is riskier and when correct, 
has higher payoff. In general, we have the 
following,  
 
Proposition 3 
Assume q > 0.5. Similar results can be obtained 
for q < 0.5. V(0, q) is a decreasing function of q. 
V(1,q) is an increasing function of q.  When q is 
smaller, the value of judgment turns positive 
earlier with respect to p and the slope is gentler.  
When q is larger, the value of judgment turns 
positive later with respect to p and the slope is 
steeper.   
Proof: From (11),  
 (0, )  ln(1 ) ln2                         V q - q= +  

and  
  (1, )  ln ln2                         V q q= +  
Hence V(0,q) is a decreasing function of q and 
V(1,q) is an increasing function of q.   
From (11), the slope of value of judgment as a 
function of p is  
 ln ln(1 )q q− −  
which is an increasing function of q.  
From (11), the line of the value of judgment 
crosses x-axis at 

 
q

p
q q

ln(1 ) ln2

ln(1 ) ln

− +
=

− −
 

Differentiate p over q, we have 
q q q q

p q
q q q q 2

ln (1 )ln(1 ) ln2
( ) 0

(1 )(ln(1 ) ln )

+ − − +′ = >
− − −

 

Therefore, the value of judgment turns 
positive later when q is larger.       

To further investigate the properties of the 
value of judgment, we will find the value of 
judgment averaged over p at each level of q. 
Integrating (11) over p from 0 to 1, we have  
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1

0
   ( (ln ln(1 )) ln(1 ) ln2 )

1
(ln ln(1 )) ln(1 ) ln2

2
1

(ln ln(1 )) ln2  
2

p q - q - q dp

q - q - q

q - q

− + +

= − + +

= + +

∫
          (12) 

 
Figure 4 is the graph of the above result. 

The unconditional mean of value of judgment is 

always negative except at q = 0.5, at which point 
it is zero. This is a consequence of the entropy 
law, which states that entropy in a closed system 
moves towards its maximum. From the graph, 
the unconditional mean is smaller when q is 
further away from 0.5. This offers another 
explanation why people are in general 
conservative.  

 

Average Value of Judgment
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Figure 4. Average values of judgment. The curve is the value of judgment averaged over different levels of 
objective probability at each level of subjective probability.  The unconditional mean of value of judgment is 
always negative except at q = 0.5, at which point it is zero. The unconditional mean is smaller when q is 
further away from 0.5. This offers another explanation why people are in general conservative.  
 

III. Value of Judgment and the Expected Rate of 
Return of Portfolios 
In this section, we will compare the value of 
judgment calculated from the theory with the 
expected rates of return of the portfolios 
constructed from the same judgment. 
Investment decisions are made according to 
investors’ judgment about stocks. To quantify 
the relation between judgment and investment 
decision, we will consider a market with a risk 
free asset and some risky assets. A unit of the 
risk free asset provides a payoff of 1 at the end 
of each time period. This risk free asset is the 
default asset of a portfolio. Without loss of 
generality, all the risky assets provide payoff of 1 
at period 0. In the next period, an asset’s payoff 
may either increase by d or decrease by d, with 
different levels of probabilities. Assume that the 

market does not detect the differences among 
various risky assets, and their unit prices are 
identical and equal to the unit price of risk free 
asset.  

We will assume investors hold simple 
portfolios with only two assets: a risk free asset 
and a risky asset. Investors aim at maximize 
expected geometric return (Fernholz, 2002; Sinn, 
2003).  Based on the subjective assessment of 
the return distribution of the risky asset, an 
investor can determine the optimal portion of 
the risky asset in the portfolio and calculate the 
expected rate of return of this portfolio. Suppose 
an investor believes one risky asset will have a 
probability q to increase its payoff by d and a 
probability 1- q to decrease its payoff by d. 
Assume the portfolio he constructed contains a 
portion x of risky asset and the remaining 



NeuroQuantology |September 2008 |Vol 6 | Issue 3| Page 222-233 
Chen J. The physical foundation of the mind 

ISSN 1303 5150                                            www.neuroquantology.com 

 

232 

portion of 1 – x is risk free asset. The expected 
geometric return is  

1

1

((1 ) (1 )) ((1 ) (1 )) 1

(1 ) (1 ) 1 

q q

q q

x x d x x d

xd xd

−

−

− + + − + − −

= + − −
            (13) 

To find out the value of x at which the portfolio 
will have the maximal rate of return, we 
differentiate the above formula with respect to 
x.  

1

1

   ((1 ) (1 ) 1)

(1 ) (1 ) (2 1 )

q q

q q

d
xd xd

dx
d xd xd q xd

−

− −

+ − −

= + − − −
 

 
The above differentiation equals zero when  

 2 1q
x

d
−

=  

At this value of x, the portfolio obtains the 
highest expected geometric return. Plug the 
value of x into (13), the expected rate of return 
is  

1

1

(1 2 1) (1 (2 1)) 1

2 (1 ) 1

q q

q q

q q

q q

−

−

+ − − − −

= − −
 

If the objective return distribution of the 
risky asset is {p, 1-p} instead of the subjectively 
assessed {q, 1-q}, the expected rate of return of 
the portfolio becomes  

12 (1 ) 1p pq q −− −                                                   (14) 
The first order approximation of (14) is 

 
1ln(2 (1 ) )

ln (1 )ln(1 ) ln2

p pq q

p q p q

−−

= + − − +
 

Comparing the above result with (9), we 
find that the first order approximation of the 
expected rate of return of the portfolio 
constructed from a certain judgment is exactly 
equal to the value of the judgment defined in 
this work. This is not obvious that these two 
values should be equal. Initially, I was only 
looking for some numerical correlation between 
these two values.  

Since the value of judgment provides a 
good approximation to the rate of return on 
investment, it can be conveniently used to 
understand the relation between human 
judgment and patterns in investment returns 
and stock market. Detailed discussion will be 
provides in a later work (Chen, 2008).   
 
IV. Conclusion 
This paper is a continuation of earlier works to 
understand human mind from statistical 
mechanics (Chen, 2003; 2005; 2007). We 
develop a mathematical theory on the value of 
judgment, which is generalized from the entropy 
theory of information. The elegant properties 
this theory exhibits are further indication that 
human mind is shaped by fundamental physical 
laws. An important property of this theory is that 
the value of a judgment provides a good 
approximation to investment return of the 
portfolio from the same judgment. The 
definiteness of this theory provides the discipline 
to the mostly ad hoc approach in behavioral 
models in investment.  
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