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Conservation Laws for
Relativistic Fluid Dynamics
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1. Introduction

In his fundamental paper of 1948, Taus [T1] derived the equations of
relativistic fluid dynamics:

2 o) () o
gt((P+P)l : ) 88x<(,0+p)lv2 +p> 0,
gt((Per)l v? +p) 86 ((p+p)l_vvz> —0.

Here n is the rest mass density, p is the proper energy density, p is the pressure
and v is the particle speed. TAuB then obtained the Hugoniot curve of
relativistic shocks, and also showed that v, the ratio of specific heats, must be
less than 5 He gave a more systematic description of relativistic hydrody-
namics in [T2] In 1986, THOoMPSON [Th] established several relations on the
relativistic shock curves. He observed: “The relativistic shock equations are
much more complicated and do not lend themselves to expressions that are
both simple and general.” More recently, instead of working on the full
system, SMOLLER & TEMPLE [ST] consider the system of conservation laws of
energy and momentum in special relativity. For the equation of state p = ¢°p,
they solved the Riemann problem and the Cauchy problem for the system.
CHEN [C] extended their results to the general relativistic p-system where the
equation of state is p = p(p), p'(p) > 0 and p"(p) = 0.

In this paper, we rigorously develop the mathematical theory of relativ-
istic fluid dynamics. Although the system is much more complicated and the
results are much harder to obtain, we establish a complete analogy between
classical and relativistic hydrodynamics. We also show that the Newtonian
limits of our results reduce to the classical results for which the reader is
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referred to [S, Chap. 18]. Because of the complexity of the relativistic system,
we develop new techniques and criteria. By using the Riemann invariants

Rzgln(”v) [P, sy <1+v) [P,

p+p & 2 p+p

we introduce a simple criterion to exclude the formation of vacuum, that is,
R; > Si

where R; is the value of R at x < 0 and Sk is the value of R at x > 0. We notice
that in relativistic p-systems, the criterion to exclude the formation of vacuum
takes the same form [C]. We also note that in nonrelativistic cases, the cri-
terion to exclude the formation of vacuum can also be written as R; > Sy as
we shall see later. In fact, this criterion can be used in general hyperbolic
systems to detect the loss of strict hyperbolicity. The use of the ( p, v)-plane to
solve the Riemann problem, following [CF], has been restricted by the
seemingly paradoxical situation that there are two distinct admissible solu-
tions [STX]. We show that the (p, v)-plane can always be used to uniquely
determine the solution of the Riemann problem, as long as we keep in mind
the correct entropy condition.

This paper is organized as follows. In Section 2, we give the background
of the problem. In Section 3 we determine the characteristic speeds of the
system, which are

v—\/Dp v+,/pp
il =, )\,2 = U7 )»3
1 —v/p, T+oyp

We can recognize that 4; and A3 are the sums of sound speed and particle
speed under the Lorentz transformation. From here we obtain a simple
formula

VPo

for the speed of sound in the relativistic setting. This is much simpler than
TAup’s [T2] original formula, which is given by

n di

1+i (dn)S

where i = (e+ p)/n is the rest specific enthalpy. We prove below that the
speed of sound is strictly less than the speed of light. We prove that the
system is strictly hyperbolic with the first and third characteristic families
genuinely nonlinear and the second characteristic family linearly degenerate
and we find the Riemann invariants. In Section 4, we show that the Lax
shock inequalities are satisfied globally and entropy is monotone along the
shock curves. We also derive the condition preventing the occurrence of a
vacuum and then prove the existence and uniqueness of the solution of the
Riemann problem.
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2. Preliminaries

This section is a brief account of Section 10, Chapter 2 of WEINBERG [W].
For more details, consult that book. In the flat 2-dimensional space-time, the
Minkovski metric takes the form

(2.1) 7l = <—01 ?)

The speed of light is taken to be unity, i.e., ¢ = 1. The general conservation
law is

(22) viTij = 07 j= 07 17

where TV is the stress-energy tensor for a perfect fluid. In special relativity,
(see [W, ST)) it is given by

(2.3) T =(p+p) UV +pr’,  i,j=0,1,

where p is the pressure, p is the proper energy density, and U’ is the velocity
vector, 1.e.,

1 v
0 _ 1 _
(1— )V’ v (1— )V’

in which v is the velocity of the moving particle. We can write down 7%
explicitly as

) 2
700 701 e (p+p) 2
(2-4) 710l = v 2 :
(ptp)th PH(p+p)i5

The conservation laws of energy and momentum thus become

(2.5) g((pﬂv)l”2 +p) ;((p+p)1_—vvz>=0,

eo a(ernrts)+ §(<p+p>1”2 +p) =0

Apart from energy and momentum, the rest mass is also conserved in the
fluid:

(2.7) % <n(1 - 02)‘/2) + a% (nv(l - vz)l/z) =0,

where 7 is the density of the rest mass.
As in [Th], we assume that the equation of state is given by

(2.8) p—n=p/lr=1),
(2.9) p=hksn' ",

where s is the entropy and £ and y,1 <7y < %, are positive constants.




380 Jing CHEN

From the conservation of energy, momentum and rest mass, as in the
classical case, we can deduce the entropy equation

Os Os

Throughout the paper we assume that the reader is familiar with the
notions and terminology of conservation laws as discussed in [L, S], for

example.

3. Eigenvalues and Eigenvectors of the System
Our system is
0 _ 0 _
G a1 — )12 o 1— 212 =
5 (n( v7) + o no(l —v7) 0,
0 v 0 v’
3.1 =
60 g(ernits) e (6 rpratr) <o

g((Per)lvz +p) ;((p+p)1_—1)02>0

where the pressure p = (y — 1)(p — n).
First we will find the characteristic speeds of the system. Let

nv

Vi -
A= (p+p) 1t ., B=1(p+p) 1321;2"‘17
(p+P) 75+ 0 (0 +0) i
The Jacobian of 4 with respect to (n,v, p) is
11 o2 # 0
62 = | R gmoowmr
S ety oot Py
_ (1 bg) (”T,”f(u'z;”” ST
—GUE ol g

112 (1-12)?

The Jacobian of B with respect to (n,v, p) is

v n O
Vi—p? (1-02)*?
y—1 v R 1+07

(3.3) JB = - 2 (l_vz)z =2
oo ()4
1—1? (1—12)? 1-?
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Thus the Jacobian of the system is

J=JB-J4"!
(O=Dtp) e a(G=De*+ D) _ (=)'
(3.4) ptp—ipv® ptp—ypv? —pv*+ptp
= | GDetp=)" (=) +2)(p-p)=3G=Dnlo (=D ptp)—ypv®
v tptp po—ipv? po—ypv?

0 1 0

Simple calculations yield the three eigenvalues of J:

3y = =G =P = Vi ¥ p)(1 =)

p+p—pv? ’
(3.5) iz =0,
sy = =@ = DP)t Voplp + p)(1 = 0°)
p+p+ypv? '
We can simplify A, and A3: Let 6 = p’fp. Then
(3.6) L= =P =l +p) (=)  v-0
' " p+p—ypr? 1—v0’
From p = ksn’ and n = p — y%l, we have
y
p= ks(p — L) .
y—1
Thus

(%p(p,s) — ksy (p - /Z) o {1 - gpp(p,S)/(v - 1)]

_ p . vp 2 i B
= o= r—p/ Do /=)

Hence we have

G=Dlptp) 0 (p.s) = W
(p=p/(y=1)) =10 """ p—p/ly—1)
Then
9 _
Thus, from (3.6),
. v=P
(38) Al = 1= U\/p_p.
Similarly,
(3.9) PR /)

RN
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If v, the speed of the fluid, is zero, then

)L3:\/IJ_.

This shows that the sound speed is ,/p,. Now we prove that the sound speed
is less than the speed of light. We have

/4 Y

3.10 - — )
Since p —n = p/(y - 1),

p>p/(y—1)
and then

o

—>1/y—1.

» /

Thus, from (3.10),
Py <=7
PTLH1/(p-1)
Taus [T1, T2] showed that the kinetic theory of gases yields y < % Then

— 1.

2
pﬂ§§7

that is, all sound speeds are bounded by \/% of the speed of light.

Remarks. 1. In the classical case, the sound speed is ,/p,. Since p — n = e, and
e is very small compared with the rest mass in non-relativistic case,

pr=n .

So /px is the Newtonian limit of ,/p,. We see that in the relativistic case, the
eigenvalues are the sums of the sound speed and the particle speed under the
Lorentz transformation, and their Newtonian limits are exactly what we have
in the classical situation.

2. In [T2], the sound speed c is given by the complicated formula

oo n (d
14 dn),

where i = e + p/n is the rest specific enthalpy.

Itis easy to see that A4; < 4, < 43. So the system (3.1) is strictly hyperbolic.
Next we show that A; and A3 are genuinely nonlinear while A, is linearly
degenerate.

We find the eigenvector of each eigenvalue. For simplicity, instead of
using the conservation of rest mass, we use the equation of entropy (2.10):

§+v§—
ot ox

to replace the equation of the conservation of mass. Then the system becomes

0,
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gt<(p+p)1 Uy) 5?((/)+p)l v +p) 0,

(3.11) gt ((p +P) 7 v +p) +%((P +p)1—vvz) =0,

s n 0s
22
ot Ox
where p = p(p,s). This system is equivalent to (3.1) when we have smooth

solutions. In a way like that for the system (3.1), we can find the Jacobian of
the system with respect to (p,v,s) as

=0

(=14p,)v __pte ups(1=0%)
v?p,—1 v?p,—1 v?p,—1
(3.12) J=1 __p0-) Clpe _ (1=p
(ptp)Wpy=1)  v’py-1 (p+p)(?ppy—1)
0 0 v
with eigenvalues
U — , v )
(3.13) 2 :w7 Jo =1, ,13:%_
1 —vy\/po(p,s) L+vy/po(p,s)
Let
U=pv p+p _p(1-1?)
[ 1-vp, 1-vp,
Sh=J—la-I=| 0=l  (pp_ = _(=)p
(p+p)(1=0%py)  1=1?p, (p+p)(1-07py)
0 0 0
(=op)(1-0%) ptp _op(1-0?)
1-v’p, 1-v?p, 1-v’p,
(3.14) = pp(1—0?)’ (=vpy) (1= (1-2*p,
(p+p)(1-v"py) 1-vp, (r+p)(1-02py)
0 0 0

If », is the eigenvector corresponding to /,, then r, satisfies
Jrrm=0
with solution
= (=p5,0,pp).
Moreover, V1,, the gradient of 1, with respect to (p,v,s), is
Via = (0pl2, 0pl2,0542) = (0,0, 00, Osv) = (0, 1,0).
Thus

(315) v;LZ = (Oa 1,0) ! (_pS’OapP) = 07

i.e., Ao = vy is linearly degenerate.
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Now we prove that A; is genuinely nonlinear. Let

VP (1-0%) p+p _op(1=0?)
1—v?p, 1—v’p, 1—v’p,
— — . 17v2>2 \/17—)(1702) (1_1}2)2
=J— ) 1= Pol 2 Py
! ! (p+p)(1=’py)  1=0p,  (p+p)(1-07py)
0 0 VP (1=0%)
v/
. s v—/p(ps), .
Thus 7, the eigenvector of 4} = 7%, satisfies
1=0/p(p:s),
71 ry = 0

with solution

We find that
V/l] = (8;))\«2; ab‘)"27 63/12)

0 i *p 1 — 2
= <_1 ap(l_vz)(v pp_l)z\/p_ﬂv 1 Po _l Bsar( U) )a

2o (1-uvyp) 2(1—oym) Vo
SO
92
(3.16) r1~V)1:_l(l_vz)ﬁ(p+ﬂ)+2pp(l—pp)

2 (1—vyB, )V VBr(p+p)

From (3.7), g—‘p’ :1% , and so

Pp_9 wp _y0-1p
o> dpp+p  (p+p)
%

Since i 0, r - V/; is always negative. Thus 4, is genuinely nonlinear.
Similarly, we can prove that A3 is genuinely nonlinear.

We now find the Riemann invariants of each eigenvalue. By definition, a
Riemann invariant w of 4; satisfies

n>0.

i (wp, wy, wy) = 0.

For Ay, r = 1,—‘@5)(;”_),0), and the equation ry - (w,, wy,ws) =0 1is
equivalent to

vl =)

W, — Wy ————= =
P ptp

We can easily see that s is a Riemann invariant. The other one is constant

along the curve determined by the differential equation

dp _ ptp

dv p(1—1?)’
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which we solve to get

1 1 V/
(3.17) —In Rl +/ Pr dp = constant.
2 1—v ptp

Thus ;ln %*” + f mdp is another Riemann invariant of A;. Similarly, the

v

Riemann 1nvar1ants of 3 can be found to be
1 1 v,
(3.18) s and —ln( + U) VB
2 p+ p

The eigenvector of 4, is (—ps, 0,p,). A Riemann invariant must satisfy

_ps'wp+pp'w3':0
which has two easy solutions v and p. So the two Riemann invariants of 1, are
(3.19) v and p.

4. The Riemann Problem

In this section, we discuss the Riemann problem of system (3.1), namely
the initial-value problem with initial data Uy(x) = (po(x), vo(x), po(x)) con-
sisting of a pair of constant states U = (p;,vr,pr) and Ur = (pg, Ur, Pr)
separated by a jump discontinuity at x = 0, that is,

- UL if X§O,
UO(X)_{UR if x>0,

To study the Riemann problem, we must first investigate the properties of
the shock curves. In [T1], TauB found the Hugoniot curve of relativistic
shocks, namely,

Lemma 4.1. [T1]. The Hugoniot curve of relativistic shocks is

ptp pL+ L
(4.1) - (p+p) = an (b, +p),
L

where (n, p,p) represent the rest mass density, energy density and pressure at
right.

Proof. From (3.1), our system is

%(m - vz)_l/z) +% (nv(l - vz)_1/2> =0,
(0o )+ o (0 +p>1”—202+p)

gt ((/oer)1 v +p) +%((p+p)lvvz>

where the pressure p = (y — 1)(p — n).

0,

0,
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Take a coordinate system in which the shock speed is zero. The Rankine-
Hugoniot conditions are

(4.2) [F] =s[U] =0,
that is,
(43) s = "T_ﬁLiLv% ,
v? v
(4.4) (p +P)m +p=(pL+pr) 1 _LU% + 1,
(4.5) (P4 = )
Define
(4.6) nv npug

= =M
Vi—vr 1-v}

If v = 0, then M = 0. So v, = 0, that is, the speed of both sides are equal. This
is a contact discontinuity. In shock waves, we can assume that M 0.
From (4.4), we have

nv p+p v nLug pL+pL UL — —(p-p)
: - : =—(p—pL),
Vi n Vi—o* J1-v2 m J1-v}

that is,

p+p v pr+pL UL
4.7 M — = —(p—0n).
From (4.5), we deduce that
p+p 1 prtp 1
4.8 M — =0.
“8) Y o \/1—uvs
From (4.7), (4.8), (4.6) we obtain
u|PEP I ppt+p 1 o
noy1—? o J1—v| V1I-1?
_MP+P v pptpr u L0
v VI —1?

no\1—0? ng \/1—
M

:(P*PL)m:(P*PL)';a

that is,

(4.9) p+p pLtp 1 —ou =(p—p1)-
n ny, V1I=02V1 -2

S| =

)
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similarly,

p+p 1 — vy _PL+pL:(p_pL)l
noV1—v/1-v ny ny
From (4.9), (4.10), it follows that

pP+p pLtp 1 — vy PP
n ny V1I=0v2V1 -2 n

<p+p 1 — v pL+pL>*pL+pL

(4.10)

n vl—vzs/l—v%_ ny ny,

2
p+m\*> (pr+p p+p  pLtp
:( >_<L ):(p_pL)|: B + L B :|
n ny n ny

We rearrange terms to get

@10 (p +p)2_(p +p)(p—pL) (pL +pL>2+(,0L +p)(p—p1)

n n? nr n? ’

which can be simplified to
pL+DpL

p+p
(p+p)=—"5—(p,+Pp)

4.12
(4.12) n? ny

This defines the Hugoniot curve of the relativistic shocks. [

Next we show that the Lax entropy conditions hold globally along the
shock curves. For the non-relativistic case, see [We, S].

Theorem 4.1. For system (3.1), the Lax entropy conditions are satisfied
everywhere along the shock curves.

Proof. We only consider 1-shocks. The case of 3-shocks can be treated sim-
ilarly. Without loss of generality, we choose a coordinate system in which
v, = 0. If we write the system (3.1) in the form U, + F(U), =0, the jump
condition is g[U] = [F], where [ f] denotes the jump of f across the shock. We
assume that the jump conditions define the shock curve U = U(¢) with shock
speed o = o(¢),e < 0. From the general theory of conservation laws, we
know that for ¢ negative and small, ;(¢) < a(¢) < 41(0). We show that this
inequality holds everywhere along the shock curve.

Thus, suppose that ¢ is the first point where 4,(¢) = a(¢), & < 0. Since

(4.13) ¢'lU)+oU' =dFU,

if we consider this at ¢ = ¢;, and multiply it by the left eigenvector /;(¢g;), we
get ¢'l; - [U] = 0. Suppose now that

(4.14) I - [U] #0;
then ¢'(e;) = 0; hence at ¢, U’ = dFU’, so that U’ = r;. Then
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d )
d—p(O'—/Ll)

d
dp

£=¢ e=¢]

Thus 4; = o for some ¢, ¢; < & < 0; this contradicts the definition of ¢;. We
conclude that if (4.14) holds, then a(¢) > 4;(¢) for all ¢. Furthermore, if
a(e1) = 41(0) for some & < 0, then there is an & with ¢ < & < 0 so that
a'(e2) = 0. Now a(&) > 41(e2) so (4.13) at & gives cU’ = dFU’. Thus a¢'(¢)

does not change sign. Hence ¢’ > 0 50 a(¢) < 44, if ¢ < 0.

= —V/ll cr = —1.

To finish the proof, we need to show that (4.14) holds. From (3.4),

(=D’ +1]V1-1? —ynvv1-0?

arn

p+p—ipv? pp—ip?
- _ | G- (=1)(ptp)—00°
e = az =
v—\/P
0 1 -
(4.15)
where
o =Dp+p)d = D)o+ (1 =) V/wp(p+p)
ay =
p+p—p? ’
iy = L= Dn? 4+ 2= 9)(p+ p)lo+ (L= o) Vop(p +p)
p+p—p?
The left eigenvector /; of J; satisfies
(4.16) Iy -Jy = 0.

Since the third element of the first column is zero, we can set

(- D(p+p -

4.17) L[l =J12,1] =
@17) nit)=sR2 1) = P

418) L] = a1 = D@0 =)o+ (L= v)yip(p + p)

p+p—ypv?
Since the third element of the second column is 1,

(419) L3 =— (L] -A[1,2] + L[2] - A1[2,2])

(= D(p+p)(1 =) nl(y = Do? + 1IVI =2

p+p—yp? p+p—yp?
+W—1ﬂp+pxk—¥w+(ﬁ—¥)vﬂp+p)

p+p—ypv?
0=+ 2 =) (p+p)lo+ (L= v*)\/ip(p+p)
p+p—ypv?
_ (=)0 -D(p+p) +vvp(p+p)
p+p—ypv? '

We also have
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n v U2
4.20 Ul=—— — 7 _ )
( ) [ ] (m nr, (p+p) 1 — 2’ (P+P)l_vz+p pL>
From (4.12) the Hugoniot curve is

(p+p)(pe+p)  (pp+pr)(pL+Pp)

2 2
n ny

From [C], the shock curves satisfy

(p+p)(pL+p)
Since p > p; in the 1-shock, we conclude that

(4.22) p>p;.
Thus

(p+p)(pL+p)> (p+p)(PL+p1)-
Then from the Hugoniot curve, we obtain

(4.23) n>ny.
Now
_G=Dp+pa - n
i lu= p+p—pv? '(\/l—vz_nL))
R o R (o N eI
p+p—p 1 —v?
—1)2 o v+ /" 2
SL=risl pli(ijyp;,; yp(p+p)-{(p+p)1ivz+p—m
:(v—l)(p+p)(1—v2)3/2,( n _n)
p+p—ypv? Vi
Vip(p+p) [ov/yp(p + p)]
o TP e (0
(1 =)= = 1)(p+p) +v3/1p(p + p)]
— P+ p— “(p—p1)
>0

since each of the four terms is bigger than zero. Thus
I - [U] £0.
This finishes the proof. [J

To show that the shock curves are physically relevant, we need to prove
that the entropy changes monotonically along the shock curves.

Theorem 4.2. The entropy increases monotonically along 1-shock curves, and
decreases monotonically along 3-shock curves.
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Proof. We consider 1-shocks first. From p = ksn?, we get

(4.24) s=kpn7,
SO

ds L1 dn
4.25 — =k 'k p(—y)n T ==
(4.25) pE n 4k p(=y)n b

We need ds/dp > 0, whence

d
(4.26) T
dp p
Let us compute dn/dp along the Hugoniot curve

p+p pL+p
—(pL+p)="—5L(p+p.)
n }’lL

where p = n+ p/(y — 1). We can rewrite this as

Y P
(v—l‘” n) (pL +n +y_1>"i = (p+p)(p+p)n’.
Differentiating both sides with respect to p, we get, after a straightforward
calculation that

dn

[(pr+po)(p+pL)2n = (pr+ p)ng — (p+ p)ni) A
Y 2 2 2
= (pr+p)n; + (p+p)ng = (pL+pp ),

y—1 y—1

where we replace n + p/(y — 1) by p in the above equation. We want to prove
that the coefficient of dn/dp is positive; i.e., that

(4.27) (L +pL)(p+pL)2n — (pr+ p)n — (p+ p)n? > 0.
It suffices to show that
(4.28) (p+pL)(p+p)n—(p+p)n; >0

since (p + p)n? > (pr + p)n7. But from the Hugoniot jump condition (4.12),

(p+p)

2
n
(pr+pL)(p+p)n— (p+p)n; = Llpi+p—n] > 0.

Thus
dn (et )i+ (p+ e — (pu+ po)r?
dp (pL+pL)(p+p)2n— (po+p)ng — (p+p)n
We need to show, from (4.26), that

dn n

dp " yp’
that is,
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L (pe+p)ni + (p+ p)ni 15 = (oo + po)n? §
(pr+p)(p+p)2n— (po+pni—(p+pn: ~ wp

After a straightforward calculation, using (4.12), we get

y
[ (pr+p)n; + (p+p)n; —(p+ pL)nz} P

y—1 y—1
— [(pr+p)(p+pL)2n— (p+ p)ng — (p+ p)ni]n

=nf{pL +jvp[pL —pl+ (p+p)(p—pL)}-

Thus we need to show that

(4.29) pL+p vp P
prpp+p p—pg

First we prove that

(4.30) P pTrr
pte  p—p
We fix the point (p, p) and let ( p;, p,) move along the Hugoniot curve:
ptp pLt+p
(et p) == (Pt ).
I

Differentiating both sides of this equation with respect to p; and rearranging
terms we get

dpp _ 2m(p+p)(pLtp) = (p+p)n’ — (p+po)n’
dp, (p+p)n? —(p+pnp+2/(y = 1)(p+p)(pL+ p)nr
We have
(4.31) (p+p)n* = (p+p)n; >0
since, from (4.22),

pLtpL<pLtp

and since the Hugoniot jump condition

(p+p)n*(pe+pr) = (p+p)ni(pL+p)

holds. Thus the denominator is bigger than zero. By the intermediate value
theorem,

p—p  dp(&)

p—pr  dpd)

for some p; < p(&) < p. For convenience, we write pg = p(&), py = p(&). So
it is sufficient to prove that

dp _ P
dpy p+p’
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that is,

(4.32) 2n0(p+p)(po +p) = (p+po)n* = (po+ po)n*  yp
' (p+po)n>— (p+p)n+2/(0—D(p+p)po+p)no p+p

After a straightforward calculation we find

2n0(p+p)(po+p) — (P + po)n® = (po+ po)n’] (P + p)
— [(p+po)n® = (p+ p)ng +2/(7 = 1)(p+ p)(po + p)no] p
=2no(p+p)(po+p)n— (p+p) (P + po)n* — (p+ p)(po + po)r”
— [(p+po)® = (p+p)m)vp
<2n0(p+p)(po+p)n— (p+p)(p+ po)n* = (p+ p)(po + po)®
= (p+p)n2n(po+ p) — (p+ po)n — (po + po)n]-
We need to prove that
(4.33) 2no(po + p) — (P + po)n — (po + po)n < 0.

Since

(p+po)n+ (po+ po)n > 21/ (p + po)(po + po) 1,

we only have to show

V(P +po)(po+ po) n>no(po+p) -
But from (4.12), we have

(P + po)(po + po)n* = (p+ p)(po + p)ng > m3(po + p)°.

Thus
d,
dp _ op
dpy p+p
and hence
(4.34) LA ¢ AP
p—p, Ptp

Since the speed of sound p% is less than 1, we have
PP,
P =P
Hence
p+pr
pL+p
By virtue of (4.34), we arrive at (4.29). Thus
ds

—>0
dp>

> 1.
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along the Hugoniot curve. The entropy increases monotonically along 1-
shock curves. Similarly, we can prove that the entropy decreases monotoni-
cally along 3-shock curves. [J

Now we give a condition to prevent a vacuum. Since along 2-waves, the
pressure p is constant, and p = sn’, a vacuum does not occur when a 1-wave
interacts with a 2-wave or when a 3-wave interacts with a 2-wave. It is easy to
see that only the interaction of a 1-rarefaction and a 3-rarefaction wave may
possibly create vacuum.

From (3.17), (3.18), it follows that

P p
1 1+U q/pp 1 1+U /\/pp
R==-1 d S==1 — d
2 n(l—v>+/p+p & 2 <1—v> p+p "’
0

(4.35)
are two Riemann invariants. Let the initial condition be

_ (pLa UL»PL)» x < Oa
U(x7 O) - { (pR7UR7pR)7 x20.
We can thus determine (R;,S;) and (Rg,Sg) from (4.35), where (R;,S;) and
(Rg,Sr) are the Riemann invariants at x < 0 and x = 0. Along 1-rarefaction
waves, R and the entropy s are constant; along 3-rarefaction waves, S and the
entropy s are constant; along 2-waves the particle speed v and the pressure p
are constant. Let us denote the state at the left of the 2-wave as state 1, and
the state at the right of the 2-wave as state 2. Then

Ry =Ry, Sy = Sk, U] = V3.

=]

Then
R, —Spr=Ri — 5

P1 P2
1 1 v 1 1 /Dy
:—1n<+vl)+/ﬁdp— —ln(ﬂ>—/ Pr dp
2 1 - p+p 2 1—uv pt+p
0 0

P1 P2
:/ﬂdp+/ﬂdp
/ ptp / ptp

(4.36)
If RL é SR, then

Pi P2
/\/P_pdp+/\/19_pdp§0,
0p+p 0

ie, p<0.Butsincen=p—p/(y—1) =< p,
(4.37) n<0.

Hence a vacuum occurs. Thus we have proved
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Theorem 4.3. The condition for a vacuum to occur is
R; < Sg.

Remark. This approach to derive the condition for vacuum to occur is gen-
eral. When two eigenvalues coalesce and the system loses strict hyperbolicity,
the corresponding Riemann invariants should also coalesce. Consider clas-
sical gas dynamics for example. The condition for a vacuum to occur is (see
[S, p. 355])

V_I(CL“FCR)éUR_UL

where ¢ is the sound speed and v is the particle speed. The pressure for the
polytropic gas is

P=R(5)0

where p is the density and k(s) > 0 is a function of entropy s. The sound
speed is

¢ = By = k()i V2,

The two Riemann invariants are

2 2
_U+/—k( \/_p(’_l _U+'))TC7

2 2
S—v——k ppi V= -~ ¢
1V m—

So R; < Sk in this case reduces, after rearrangement, to

y_l(CLJFCR)éUR_ULa

as before. []

We now work on the existence of solutions of the Riemann problem.

Lemma 4.2.

@ < 0 on 1-shock curves, ? > 0 on 3-shock curves.
P

Proof. We only consider the 1-shock case. The 3-shock case is similar. From
(4.21),
2o wp=p)lp—p)
(p+p)(pL+p)
We have

d _, dv_d (p—p)(p—ps)
dp dp~ dp(p+p)(pL+0p)
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Since v < 0 on shock curves, dv/dp < 0 is equivalent to dv*/dp > 0. But

d’ _d (p—pu)(p—ps)
dp dp(p+p)(p+p)
_ pL+pp

(p+p.)(pL+p)

We need to prove that

2 (P—PL)(PL+p)+(p—pL)(p+pL)§—Z .

(4.38) (p = pr)(pr+p) + (P—PL><P+”L)%> 0.

First we find the expression for dp/dp. The Hugoniot jump condition is
(p+p)(pe+p)ng = (pr+p)(p+ p)n®

where n =p — p/(y —1).
Differentiating both sides with respect to p, we have

dp dp
<1+dp)<m+p>ni+<p+p>@n%

= (Pt o)+ (o + ) (p+ ) (22— L

= pL T PL pL T pL)\pPTPL dp V—17

which yields
dp _(po+p)ni = (pe+p)n + (pe+ )P+ p)205h
dp (pr+p)(p+pL)2n— (po+p)ni — (p+p)ng

Thus we have

(4.39)

(p—p)pL+p)+(p—p)(p+ pz)%

= (p—pu)(pL+p)
(pr+p)ni — (pr+p)n* + (pr+pL)(p+pL)2n 5t
(pr+p)(p+pp)2n— (p+ p)ni — (p+ p)ng
(p = p)(pe+ )P+ p)(p+ p)2n = (pr+ p)nj — (p + p)nj]
(pL+p)(p+pL)2n— (pr+p)ni — (p+ p)ni
(p=p)(p+p)(pr+p)ng — (o + pp)n* + (p+ pp) (P + pp)2n 5]
(p+p)(p+pL)2n— (pr+p)ni — (p+ p)ni '

+(p—p)(p+pL)

From (4.27), the denominator of this above expression is bigger than zero,
and the numerator is

(p—p) (L +p) (L +p) P+ pL)2n — (pr+ p)ni — (p+ p)n]

+(p—p)(p+p)|(pe+p)nf — (pr+ p)n* + (P + pr)(p+ pr)2n
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=2(p—pr)(pL+P)[(P+ pL) (L + pL)n — (p+ p)nt]
1
y—1

+(p+pr)(pL+pL)2n(p+pr)(p—pr)
>0,
since from (4.28),

(p+pr)(pr+pp)n— (p+ p)ng > 0.
So (4.38) is true and hence dv/dp < 0 on the 1-shock curves. []

Next we prove a simple property of rarefaction waves.
Lemma 4.3. dv/dp < 0 on 1-rarefaction waves and dv/dp > 0 on 3-rarefaction
waves.

Proof. On 1-rarefaction waves, we have

p

1 1
R:—ln<1+z> +/ VP = constant.

2 ptp
0

Differentiating both sides with respect to p gives
@ — 7(1 o 02) \/p_ﬂ d_p
dp p+pdp

But when s = constant, which is the case on rarefaction waves, we have, from
(3.7), that

d
ap_ptp > 0.
dp p
Thus
dv
— < 0.
dp

Similarly, dv/dp > 0 on 3-rarefaction waves. []

As in [S], for U € R3, we define

Si(U) = {(p,v,s) : (p,v,s) can be connected from the left by an
i-shock wave from U}, i=1,3,

R/(U) = {(p,v,s) : (p,v,s) can be connected from the left by an

i-rarefaction wave from U}, i=1,3.

Let

SPU) ={(p,v) : (p,v) € projection of S;(U) on the (p,v)-plane}, i=1,3,
RI(U) ={(p,v) : (p,v) € projection of R;(U) on the (p,v)-plane}, i=1,3,
I7(U) = S/ (U) UR(U), i=1,3.
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From Lemma 4.2 and Lemma 4.3, we know that dv/dp < 0 on 77 and
%> 0on T7. So we can define 7} by

(4-40) UZfl(P?PL, UL,SL)-

The 77 curve divides the (p,v)-plane into two parts. If (pg,vr) is below 77,
ie., if

vr < fi(pripL, v1,51),

then the 3-wave of the Riemann problem should be a shock because
dv/dp > 0 on 3-waves, and on a shock curve, the particle speed at the left is
always bigger than the particle speed at the right. On a rarefaction curve, the
particle speed at the left is always smaller than the particle speed at that right.
If

vr > fi(pr;PLs VL, SL),

the 3-wave of the Riemann problem is a rarefaction wave.
Having determined the 3-wave, we can investigate the 1-wave. We define
the inverse 3-wave as

(441) UZfS(l’;PRv URaSR)a

where f3(p; pr, vr,sg) is the inverse 3-rarefaction wave if the third wave is a
rarefaction wave or the inverse 3-shock wave if the third wave is 3-shock. If

v < f3(pLiPrs VRS SR),

the 1-wave is a rarefaction wave. Otherwise it is a 1-shock.
Solving

(4.42) v=fi(p;pr, vr,51), 0= f3(P;Pr, VR, SR)

we find a unique solution (py, vy ) because dv/dp < 0 on the 1-wave curve
and dv/dp > 0 on the 3-wave curve. To complete the solution of the Riemann
problem, we need to find the entropy level at the left and right on the contact
waves. But since the entropy is uniquely determined by the value of p on
shocks and is constant on rarefaction waves, we can obtain s, by the the
value of py, on l-curves and sy, by the value of py, on 3-curves. Thus we
deduce

Theorem 4.4. Consider the system of gas dynamics (3.1) for an ideal polytropic
gas whose equation of stateis p = n+p/(y — 1) and p = ksn’~'. Let Uy and Uy
be any two states. Then there is a unique solution to the Riemann problem with
these initial states, if and only if

(443) ryp < Sg.

If (4.43) is violated, then a vacuum occurs in the solution. The 3-component of
the solution is a rarefaction if

vr > fi(Pr;PLs VL, SL),

and is a shock otherwise. The 1-component is a rarefaction if
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vr < f3(pr;prs VR,SR),

and is a shock otherwise, where f1, f3 are defined in (4.40), (4.41). The solution
is unique in the class of constant states separated by rarefaction waves and
shock waves.
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